Computational Mechanics

Machine Learning and Pattern Recognition

Basics of pattern recognition and machine learning and real world applications in imaging, internet, finance. Similarities and differences. Decision theory, ROC curves, Likelihood tests. Linear and quadratic discriminants. Template based recognition and feature detection/extraction. Supervised learning (Support vector machines, Logistic regression, Bayesian). Unsupervised learning (clustering methods, EM, PCA, ICA). Current trends in Machine Learning. Prerequisites: Probability and basic random processes, linear algebra, basic computer programming, numerical methods.

Advanced Topics of Complex Networks

This course will be organized as series of reading groups or specialized seminars by members or collaborators of the research unit on Natural Networks (Networks).

Theory and Numerics of Ordinary and Partial Differential Equations

The first lesson of the course will provide a primer on complex variables. Using this mathematical formalism, the focus of the remaining first part of the course will be to introduce linear ordinary and linear partial differential equations, and the "cheap" methods to solve them using Fourier and Laplace transforms. The ordinary and partial differential equations will be placed into a context of applied mathematics (e.g. classic deterministic and stochastic systems) saving the theoretical approach for advanced lectures.

Stochastic Processes and Stochastic Calculus

This course aims at introducing some important stochastic processes (Markov chains, martingales,
Poisson process, Wiener process) and Ito calculus.
Some proofs are sketched or omitted in order to have more time for examples, applications and
exercises.
In particular, the course deals with the following topics:

Statistics Lab.

- Brief introduction to R (http://www.r-project.org/)
- Creating random variables.
- Applications to the central limit theorem and the law of large numbers
- Descriptive statistics: (i) Representing probability and cumulative distribution functions in discrete and continuous cases; (ii) calculating mean, variance, concentration indexes, covariance and correlation coeff.
- Statistical inference: (i) Point estimation and properties; (ii) interval estimation and properties; (iii) hypothesis testing and properties.

Optimal Control

Discrete-time optimal control: dynamic programming for finite/infinite horizon and deterministic/stochastic optimization problems. LQ and LQG problems, Riccati equations, Kalman filter. Deterministic continuous-time optimal control: the Hamilton-Jacobi-Bellman equation and the Pontryagin?s principle. Examples of optimal control problems in economics.

Funding and Management of Research and Intellectual Property (long seminar without exam)

This long seminar aims at providing an overview on the management of intellectual property rights (copyright transfer agreements; open access; patents, etc.). Funding opportunities for PhD students, post-docs, and researchers are also presented (scholarships by the Alexander von Humboldt Foundation; initiatives by the Deutscher Akademischer Austausch Dienst; scholarships offered by the Royal Society in UK; bilateral Italy-France exchange programmes; Fulbright scholarships; Marie Curie actions; grants for researchers provided by the European Research Council).

Foundations of Probability Theory and Statistical Inference

This course aims at introducing the fundamental concepts of probability theory and statistical
inference.
Some proofs are sketched or omitted in order to have more time for examples, applications and
exercises.
In particular, the course deals with the following topics:

? probability space, random variable, expectation, variance, cumulative distribution function, discrete and absolutely continuous distributions, random vector, joint and marginal distributions, joint cumulative distribution function, covariance,