Irene Crimaldi (IMT Lucca)

Foundations of Probability and Statistical Inference

This course aims at introducing, from an advanced point of view, the fundamental concepts of probability and statistical inference. Some proofs are sketched or omitted in order to have more time for examples, applications and exercises.
In particular, the course deals with the following topics:

- probability space, random variable, expectation, variance, cumulative distribution function, discrete and absolutely continuous distributions, random vector, joint and marginal distributions, joint cumulative distribution function, covariance,

Foundations of Probability and Statistical Inference

This course aims at introducing, from an advanced point of view, the fundamental concepts of probability and statistical inference. Some proofs are sketched or omitted in order to have more time for examples, applications and exercises.
In particular, the course deals with the following topics:

Stochastic Processes and Stochastic Calculus

 This course aims at introducing some important stochastic processes and Ito stochastic calculus. Some proofs are sketched or omitted in order to have more time for examples, applications and exercises.
In particular, the course deals with the following topics:
- Markov chains (definitions and basic properties, classification of states, invariant measure, stationary distribution, some convergence results and applications, passage problems, random walks, urn models, introduction to the Markov chain Monte Carlo method),
- conditional expectation and conditional variance,

Foundations of Probability and Statistical Inference

This course aims at introducing, from an advanced point of view, the fundamental concepts of probability and statistical inference. Some proofs are sketched or omitted in order to have more time for examples, applications and exercises.
In particular, the course deals with the following topics:

Stochastic Processes and Stochastic Calculus

This course aims at introducing some important stochastic processes (Markov chains, martingales,
Poisson process, Wiener process) and Ito calculus.
Some proofs are sketched or omitted in order to have more time for examples, applications and
exercises.
In particular, the course deals with the following topics:

Statistics Lab.

- Brief introduction to R (http://www.r-project.org/)
- Creating random variables.
- Applications to the central limit theorem and the law of large numbers
- Descriptive statistics: (i) Representing probability and cumulative distribution functions in discrete and continuous cases; (ii) calculating mean, variance, concentration indexes, covariance and correlation coeff.
- Statistical inference: (i) Point estimation and properties; (ii) interval estimation and properties; (iii) hypothesis testing and properties.

Foundations of Probability Theory and Statistical Inference

This course aims at introducing the fundamental concepts of probability theory and statistical
inference.
Some proofs are sketched or omitted in order to have more time for examples, applications and
exercises.
In particular, the course deals with the following topics:

? probability space, random variable, expectation, variance, cumulative distribution function, discrete and absolutely continuous distributions, random vector, joint and marginal distributions, joint cumulative distribution function, covariance,

Stochastic Processes and Stochastic Calculus

This course aims at introducing some important stochastic processes and Ito stochastic calculus. Some proofs are sketched or omitted in order to have more time for examples, applications and exercises.

In particular, the course deals with the following topics:

- Markov chains (definitions and basic properties, classification of states, invariant measure, stationary distribution, some convergence results and applications, passage problems, random walks, urn models, introduction to the Markov chain Monte Carlo method),

Foundations of Probability and Statistical Inference

This course aims at introducing, from an advanced point of view, the fundamental concepts of probability and statistical inference.
Some proofs are sketched or omitted in order to have more time for examples, applications and exercises. In particular, the course deals with the following topics:

? probability space, random variable, expectation, variance, cumulative distribution function, discrete and absolutely continuous distributions, random vector, joint and marginal distributions, joint cumulative distribution function, covariance,

Stochastic Processes and Stochastic Calculus

This course aims at introducing some important stochastic processes and Ito stochastic calculus. Some proofs are sketched or omitted in order to have more time for examples, applications and exercises.
In particular, the course deals with the following topics:

- Markov chains (definitions and basic properties, classification of states, invariant measure, stationary distribution, some convergence results and applications, passage problems, random walks, urn models, introduction to the Markov chain Monte Carlo method),