Numerical Methods for the Solution of Partial Differential Equations
The course introduces numerical methods for the approximate solution of initial and boundary value problems governed by linear partial differential equations (PDEs) ubiquitous in physics, engineering, and quantitative finance. The fundamentals of the finite difference method and of the finite element method are introduced step-by-step in reference to exemplary model problems related to heat conduction, linear elasticity, and pricing of stock options in finance. Notions on numerical differentiation, numerical integration, interpolation, and time integration schemes are provided.