Computational Contact and Fracture Mechanics

This course provides an overview on the theories of contact and fracture mechanics relevant for a wide range of disciplines ranging from materials science to engineering. Introducing their theoretical foundations, the physical aspects of the resulting nonlinearities induced by such phenomena are emphasized. Numerical methods (FEM, BEM) for their approximate solution are also presented together with a series of applications to real case studies. In detail, the course covers the following topics: Hertzian contact between smooth spheres; the Cattaneo-Mindlin theory for frictional contact; numerical methods for the treatment of the unilateral contact constraints; contact between rough surfaces; fundamentals of linear elastic fracture mechanics; the finite element method for crack propagation; nonlinear fracture mechanics and the cohesive zone model; interface finite elements; applications of fracture mechanics to materials science, retrofitting of civil/architectonic structures, composite materials.