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Model predictive control (MPC)

C P

objective:
e steer system state to desired setpoint using (MPC-)controller C
procedure:

1. measure/estimate current state in P and send to C
2. compute control action by solving optimal control problem
3. goto1

= optimization algorithm efficiency is crucial



MPC features

what separates MPC optimization from standard optimization?

e many very similar optimization problems are solved
e there is often time for a lot of precomputations

this can be/has been utilized for/in

e explicit MPC
e code generation for specific problems (CVXGEN, FORCES...)

e code optimization



Our work

e use first-order methods to solve MPC optimization problem

e precondition problem data to improve performance

o MPC optimization problem

minimize %xTHx—i—{th
subject to Bz =bx;
C_it S C{E S dt

where
e H is positive definite
e &, x¢, d;, and di may vary between optimization problems
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Operators

an operator A : R™ = R"™ maps each point in R" to a set in R™
Az (or A(z)) means A operates on z (and gives a set back)

a fixed-point, fixA, of A satisfies fixA = A(fixA)

the graph of an operator A is defined as

gphA = {(z,y) | y € Az}



Monotone operators

e an operator A is monotone if
(x —y,u—v) >0
for all (z,u) € gphA and (y,v) € gph4

fixA x

e it is maximal monotone if no extension of gphA exists that
preserves monotonicity



Strongly monotone operators

an operator A is -strongly monotone if
(& —y,u—v) > fllz -yl
for all (z,u) € gphA and (y,v) € gphA

fix AX T




Lipschitz continuous operator

e an operator A is -Lipschitz continuous if

[Az — Ay < Bz - y]|

e 3 < 1: contractive

e =1 : nonexpansive



Averaged operators

e an operator A is a-averaged if for some nonexpansive B and
a€(0,1):

A=(1-a)l+aB

O - 0.75-averaged O — 0.5-averaged © - 0.25-averaged

o (.5-averaged is called firmly nonexpansive
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Cocoercive operators

e an operator A is S-cocoercive if

(Az — Ay, z —y) > B||Az — Ay|?

e [-cocoercivity implies %—Lipschitz continuity
e a l-cocoercive operator is firmly nonexpansive
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Subgradients and conjugate functions

suppose that f is proper, closed, and convex, then

e Jf is a maximal monotone operator

e f*(y) =sup {(y, =) — f(z)} is proper, closed, and convex
* 0f(y) = Argmax{(y,x) — f(x)}
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Dual properties

for proper, closed, and convex f, the following are equivalent:
(i) f is B-strongly convex w.r.t. || - ||
f@)> fy) + (w,z —y) + 5llz =yl

for all uw € 0f(y)
ii) Of is B-strongly monotone w.r.t. || - ||
(|||) of* is B-cocoercwe w.rt. || -]l
) Of* is ——Llpschltz continuous w.r.t. || - ||«
)

(v) f*is ——smooth w.rt. || -]«

Fr(@) < f1 () + (V@) 2 =) + g5lle = yll2

O (@ O

str. mono. cocoercive Lipschitz

13



Additional property

o if Vf (-Lipschitz continuous and o-strongly monotone

then Vf — ol is g1--cocoercive:

o call this o-shifted 3-cocoercivity
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Gradient step operator

e the gradient step operator of f, denoted G, is defined as
nyf =1 - ’ny

e assume f is B-smooth and o-strongly convex
= vV f is vB-Lipschitz and ~yo-strongly monotone
(i.e. yo-shifted ~-cocoercive)
= Gyy =1—~Vfis max(|1 — 5|, |1 — vyol|)-Lipschitz

1-+p 1—~o
B

YV Gyy

16



Gradient step operator

oc>0:

1—7p 1—~o

G"/f

e 0 <7y < 203 = contractive

e optimal v = B% = factor

e (=y8-1=1-10)

c=0:
1—~pB

Gvf

o v =2a/B,a € (0,1)
=>1-9=1-2a
= Gy a-averaged
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Proximal operator (resolvent)

o the proximal operator is defined as
prox, ;(y) = argmin {vf() + 3llz = yl*}
e define h, = 3| - [|* 4 v/, then:
prox., ;(y) = argglaX{<x7y> —vf(x) = $ll=)*} = VA (y)

e proximal operator properties (f proper, closed, and convex)

f of Ohy = (I +~0f) Vh} = prox_;
cvx mono. 1-str. mono. 1-cocoercive
o-str. cvx  o-str. mono. (1 + 7yo)-strmono.  —-Lipschitz

B-smooth  B-Lipschitz (1 + ~B)-Lipschitz -str. mono.

1++p
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More properties of prox operator

e assume Jf is B-Lipschitz continuous and o-strongly monotone

o then prox,; is y75-shifted (1 + yo)-cocoercive

1
1++v8 1+~

-str. mono and ——-Lipschitz)

e (since prox,; = Vh? is
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Reflected proximal operator (reflected resolvent)

e the reflected proximal operator (or Cayley operator) is defined as
Cyy = 2prox,; — 1

e (¢ is nonexpansive in the general case

e (fixed-points of C.; coincide with fixed-points of prox_ ;)
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More properties of reflected proximal operator

e if Vf is o-strongly monotone and f-Lipschitz

l—vyo ~B-1
1+~0 1478

)—contractive

then O is max(

e contraction factor optimized for v = ﬁ

\/m—l)

(gives a contraction factor of
B/o+1
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Composite optimization problems

we consider composite optimization problems of the form
minimize  f(x) + g(Ax)

where

e f and g are proper, closed, and convex
e Ais a real matrix

introduce g := g o A to get primal problem
minimize  f(z) + g(z) (P)
introduce f := f* o (—AT) to get dual problem

minimize  f(y) + g*(y) (D)
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Optimality conditions

primal (P) and dual (D) problems have form
minimize  (z) + ¢(x)

assume 1) is -smooth
2 optimal solution to composite problem iff

x = prox,, (I — yV)r)

algorithm: find fixed point to operator prox. 4 o (I — V1)
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Forward-backward splitting

e FB-splitting obtained by iterating optimality conditions
2* = prox, , (I = yVi)a)

e (also known as proximal gradient method)
e convergence
e prox,, is firmly nonexpansive (%-averaged)
o (I — V1) is a-averaged if v = 2a/8
e composition of averaged operators averaged = convergence
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Linear convergence

assume that 1 is o-strongly convex and -smooth
(I —yV) is max(|1 — vol, |v6 — 1|)—contractive

!_contractive

optimal v = 35 = (I —=7Vy) is

prox, , (firmly) nonexpansive

ﬁ/d-‘,—l

= FB-operator prox. , o (I — V) is L_contractive

,8/ +1
= FB-splitting converges linearly with factor Bfaﬁ
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Optimal parameter selection and preconditioning

e convergence factor minimized by letting v = 73
B/o-1
B/o+1

e precondition by minimizing 3/o (i.e., reduce conditioning)

e FB splitting converges linearly with factor
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Example — Quadratic case

precondition primal problem (P) (i.e., precond. f)

o f(z)=32THe+ T
= B = Amax(H) and o5 = Apin(H)

e introduce Tq =z

* fr(e) = f(Tq) = 3¢"T"HTq +£"Tq
= Bir = Amax(TTHT) and 05, = Amin(TTHT)

e choose T diagonal to not increase computational complexity
= minimize condition number of TT HT subject to T diagonal
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Example — Quadratic case

precondition dual problem (D) (i.e., precond. f = f* o (—AT))
o flx)=32"Hz+ "z
o f(u) =3+ ATWTH ¢+ ATp)
= ﬁf = /\max(AH_lAT) and Of = /\min(AH_lAT)
e introduce ETv = 4
o fo(v) = F(ETv) = 1(6 + ATET )T H-1( + ATET )
= B, = Amax(EAHYATET) and 0f, = Amin(FEAH-YATET)
e choose FE diagonal to not increase computational complexity
= minimize condition nbr of EAH'ATET s.t. E diagonal
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Acceleration

e fast proximal gradient method

yk — xk + ok(xk _ xkfl)

aP = prox. ., (I — vV)y*)

e preconditioning improves performance of FB-operator
= same preconditioning can be used with acceleration
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Optimality conditions

e composite problem
minimize  ¥(x) + ¢(z)
e 1z optimal solution to such problems iff
2z =CyyCrez T = prox.,,(2)

e find fixed-point to C,,C,4 to solve problem
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Generalized Douglas-Rachford splitting

e iterate C,,C.,4 to find fixed-point (Peaceman-Rachford splitting)
Zk+1 = Owcwzk

e .y and C,4 are nonexpansive, so is composition
= not guaranteed to converge in general case

e introduce averaging with o € (0, 1):
= (1= )T + aClyCryg) 2"

e o = 0.5 : Douglas-Rachford splitting
e o= 0.5 applied to (D) : ADMM
e iteration of averaged operator converges to fixed-point

(9

0.5-averaged
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Linear convergence

e assume that v is o-strongly convex and S-smooth

o O,y is max (}jr?yg, Yf;ﬁl)—contractive (so is CyypClg)

e D-R operator ((1 — a)I + aCyyCyg) is
(1 —a)+ amax (L‘rzg, '{f;é)-contractive
= D-R algorithm converges linearly with same factor
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Optimal parameter selection and preconditioning

e convergence factor (1 — a) + amax (1_7” 76—1)

14+yo? 1498
e optimal parameters

o o =1 (i.e. Peaceman-Rachford splitting)

o selection y = ﬁ
\/Blo-1
= convergence rate

B/o+1
e precondition by minimizing 3/o
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Preconditioning heuristics

e assumption that ¥ both strongly convex and smooth is rare
e can do heuristic extensions to cover wider classes

e here: focus on preconditioning heuristic for MPC problems
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MPC problem on composite form

e MPC optimization problem
minimize %xTHx—i—{th
subject to Bz = bz, -
C_lt <Czx<ds
can be cast on the form

minimize f(x) + g(Ax)

e splitting 1:
f(@) = 32" He + & v + Ipa—ia, (2)
9(y) = Id ,<y<d: (v)
A=C
e splitting 2:
flx) = 32" He + & T+ 1 <oa<d, (@)
9() = Ly=ba (y)
A=B
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Properties

o for splitting 1 and 2:

e fis l-strongly convex w.r.t. |- ||&
o f*is 1-smooth w.rt. ||/ g-1
o f=f"0(—AT)is 1-smooth w.r.t. || - [|ag—1a7

e implications:
e primal formulation (P) has a nonsmooth strongly convex term
= can be solved by DR-splitting but not FB-splitting
o dual formulation (D) has a non-strongly convex smooth term
= can be solved by DR-splitting and FB-splitting
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Heuristic preconditioning

o for both splitting 1 and 2:
f(@) = gllalf + €M + Liex(z)

where I.cx is indicator function for different sets

e heuristic: do preconditioning and parameter selection for
quadratic part (i.e., assume I,cx = 0)
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Primal and dual preconditioning

o preconditioning of primal formulation

e precondition quadratic part (1z||% + ¢" z)

e minimize condition number of TT HT subject to T diagonal
e preconditioning of dual formulation

e precondition quadratic part (1(¢+ A" p)"H (€ + AT p))

e minimize condition number of EAH 'ATET st. E diagonal
o if matrix positive semi definite only

e minimize ratio between largest and smallest nonzero eigenvalues
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Application - MPC of pitch angle in aircraft

4 states

2 outputs

2 inputs

control horizon 10

hard input constraints

soft output constraints

100 decision variables

diagonal quadratic positive definite cost matrices
condition number of Hessian: 10'°
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Numerical evaluation - ADMM

Figure: Average number of iterations for different -values, with and
without preconditioning, and for different relaxation a.
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e theoretical optimal: v* =1, a=1 2

e empirical optimal: vy=4, a=1



Numerical evaluation

e fast dual FB-splitting with and without preconditioning
e ADMM with and without preconditioning
o MATLAB implementation

exec time (ms) nbr iters
alg. precond split./param  avg. max avg. max
FDFBS vy 1/- 1.2 5.8 20.0 105
FDFBS n 1/- 98.9 679.4 1850.1 12783
FDFBS vy 2/- 2.3 12.1 21.7 102
FDFBS n 2/- 47139 28411 50845 308210
ADMM y 1/th. opt. 4.5 153 542 197
ADMM vy 1/emp. opt. 1.6 3.6 15.6 43
ADMM n 1/emp. opt. 17.2 825 2243 1127
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Numerical evaluation — C

C implementation comparison to FORCES and MOSEK

exec time (ms)

algorithm  splitting  avg. max
FDFBS 1 0.061 0.196
FDFBS 2 0.079 0.232
FORCES - 0.347 0.592
MOSEK - 4.9 5.4

o FDFBS: preconditioned fast dual forward-backward splitting

o FORCES: code generator for model predictive control problems
based on interior point methods

e MOSEK: commercial QP solver
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Thank you

Questions?
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