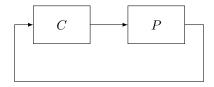
Preconditioning in First Order Optimization Methods

Pontus Giselsson

Stanford University (joint work with Stephen Boyd)

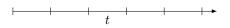
Model predictive control (MPC)



objective:

• steer system state to desired setpoint using (MPC-)controller *C* procedure:

- 1. measure/estimate current state in P and send to C
- 2. compute control action by solving optimal control problem
- 3. go to 1



⇒ optimization algorithm efficiency is crucial

MPC features

what separates MPC optimization from standard optimization?

- many very similar optimization problems are solved
- there is often time for a lot of precomputations

this can be/has been utilized for/in

- explicit MPC
- code generation for specific problems (CVXGEN, FORCES...)
- code optimization

Our work

- use first-order methods to solve MPC optimization problem
- precondition problem data to improve performance

• MPC optimization problem

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^THx + \xi_t^Tx \\ \text{subject to} & Bx = b\bar{x}_t \\ & \underline{d}_t \leq Cx \leq \bar{d}_t \\ \end{array}$$

where

- *H* is positive definite
- ξ_t , x_t , \underline{d}_t , and \overline{d}_t may vary between optimization problems

Outline

- operator theory
- operators
 - gradient step operator
 - · proximal operator
 - reflected proximal operator
- composite optimization algorithms
 - forward-backward splitting
 - linear convergence and preconditioning
 - Douglas-Rachford splitting
 - linear convergence and preconditioning
- preconditioning heuristics
- · numerical results

Operators

- an operator $A:\mathbb{R}^n \rightrightarrows \mathbb{R}^n$ maps each point in \mathbb{R}^n to a set in \mathbb{R}^n
- Ax (or A(x)) means A operates on x (and gives a set back)
- a fixed-point, fixA, of A satisfies fixA = A(fixA)
- ullet the graph of an operator A is defined as

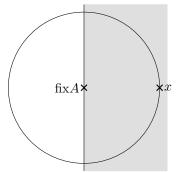
$$gphA = \{(x, y) \mid y \in Ax\}$$

Monotone operators

ullet an operator A is monotone if

$$\langle x - y, u - v \rangle \ge 0$$

for all $(x, u) \in \mathrm{gph} A$ and $(y, v) \in \mathrm{gph} A$



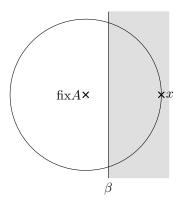
 \bullet it is maximal monotone if no extension of ${\rm gph}A$ exists that preserves monotonicity

Strongly monotone operators

an operator A is β -strongly monotone if

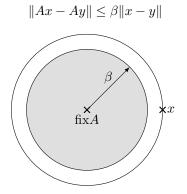
$$\langle x - y, u - v \rangle \ge \beta \|x - y\|^2$$

for all $(x, u) \in \operatorname{gph} A$ and $(y, v) \in \operatorname{gph} A$



Lipschitz continuous operator

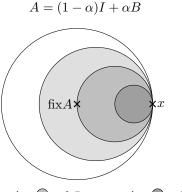
ullet an operator A is $\beta ext{-Lipschitz}$ continuous if



- $\bullet \ \beta < 1 : \ {\rm contractive}$
- $\beta = 1$: nonexpansive

Averaged operators

• an operator A is α -averaged if for some nonexpansive B and $\alpha \in (0,1)$:

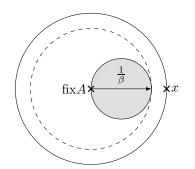


- \bigcirc 0.75-averaged \bigcirc 0.5-averaged \bigcirc 0.25-averaged
- 0.5-averaged is called firmly nonexpansive

Cocoercive operators

ullet an operator A is eta-cocoercive if

$$\langle Ax - Ay, x - y \rangle \ge \beta ||Ax - Ay||^2$$



- β -cocoercivity implies $\frac{1}{\beta}$ -Lipschitz continuity
- a 1-cocoercive operator is firmly nonexpansive

Subgradients and conjugate functions

suppose that f is proper, closed, and convex, then

- \bullet $\,\partial f$ is a maximal monotone operator
- $f^*(y) \triangleq \sup_{x} \left\{ \langle y, x \rangle f(x) \right\}$ is proper, closed, and convex
- $\partial f^*(y) = \underset{x}{\operatorname{Argmax}} \{ \langle y, x \rangle f(x) \}$

Dual properties

for proper, closed, and convex f, the following are equivalent:

(i) f is β -strongly convex w.r.t. $\|\cdot\|$

$$f(x) \ge f(y) + \langle u, x - y \rangle + \frac{\beta}{2} ||x - y||^2$$

for all $u \in \partial f(y)$

- (ii) ∂f is β -strongly monotone w.r.t. $\|\cdot\|$
- (iii) ∂f^* is β -cocoercive w.r.t. $\|\cdot\|$
- (iv) ∂f^* is $\frac{1}{\beta}$ -Lipschitz continuous w.r.t. $\|\cdot\|_*$
- (v) f^* is $\frac{1}{\beta}$ -smooth w.r.t. $\|\cdot\|_*$

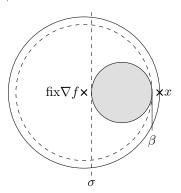
$$f^*(x) \le f^*(y) + \langle \nabla f^*(x), x - y \rangle + \frac{1}{2\beta} ||x - y||_*^2$$

cocoercive

Lipschitz

Additional property

• if ∇f β -Lipschitz continuous and σ -strongly monotone then $\nabla f - \sigma I$ is $\frac{1}{\beta - \sigma}$ -cocoercive:



• call this σ -shifted $\frac{1}{\beta}$ -cocoercivity

Outline

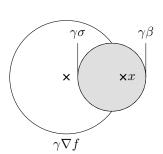
- operator theory
- operators
 - gradient step operator
 - · proximal operator
 - reflected proximal operator
- composite optimization algorithms
 - forward-backward splitting
 - linear convergence and preconditioning
 - Douglas-Rachford splitting
 - linear convergence and preconditioning
- preconditioning heuristics
- · numerical results

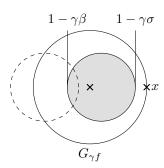
Gradient step operator

ullet the gradient step operator of f, denoted $G_{\gamma f}$, is defined as

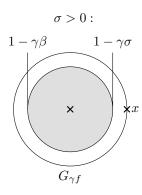
$$G_{\gamma f} := I - \gamma \nabla f$$

• assume f is β -smooth and σ -strongly convex $\Rightarrow \gamma \nabla f$ is $\gamma \beta$ -Lipschitz and $\gamma \sigma$ -strongly monotone (i.e. $\gamma \sigma$ -shifted $\frac{1}{\gamma \beta}$ -cocoercive) $\Rightarrow G_{\gamma f} = I - \gamma \nabla f$ is $\max(|1 - \gamma \beta|, |1 - \gamma \sigma|)$ -Lipschitz

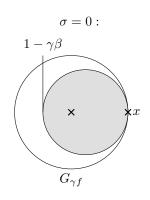




Gradient step operator



- $0 < \gamma < 2\beta \Rightarrow$ contractive
- optimal $\gamma = \frac{2}{\beta + \sigma} \Rightarrow$ factor



Proximal operator (resolvent)

• the proximal operator is defined as

$$\operatorname{prox}_{\gamma f}(y) = \operatorname*{argmin}_{x} \left\{ \gamma f(x) + \tfrac{1}{2} \|x - y\|^2 \right\}$$

 \bullet define $h_{\gamma} = \frac{1}{2}\|\cdot\|^2 + \gamma f$, then:

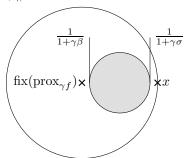
$$\mathrm{prox}_{\gamma f}(y) = \operatorname*{argmax}_{x} \left\{ \langle x, y \rangle - \gamma f(x) - \tfrac{1}{2} \|x\|^2 \right\} = \nabla h_{\gamma}^*(y)$$

proximal operator properties (f proper, closed, and convex)

f	∂f	$\partial h_{\gamma} = (I + \gamma \partial f)$	$\nabla h_{\gamma}^* = \operatorname{prox}_{\gamma f}$
CVX	mono.	1-str. mono.	1-cocoercive
σ -str. cvx	σ -str. mono.	$(1+\gamma\sigma)$ -str.mono.	$\frac{1}{1+\gamma\sigma}$ -Lipschitz
eta-smooth	eta-Lipschitz	$(1+\gamma\beta)$ -Lipschitz	$\frac{1}{1+\gamma\beta}$ -str. mono.

More properties of prox operator

- ullet assume ∂f is eta-Lipschitz continuous and σ -strongly monotone
- then $\operatorname{prox}_{\gamma f}$ is $\frac{1}{1+\gamma\beta}$ -shifted $(1+\gamma\sigma)$ -cocoercive



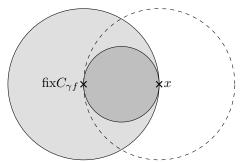
• (since $\mathrm{prox}_{\gamma f} = \nabla h_{\gamma}^*$ is $\frac{1}{1+\gamma\beta}$ -str. mono and $\frac{1}{1+\gamma\sigma}$ -Lipschitz)

Reflected proximal operator (reflected resolvent)

• the reflected proximal operator (or Cayley operator) is defined as

$$C_{\gamma f} := 2 \operatorname{prox}_{\gamma f} - I$$

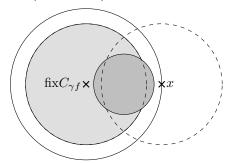
• $C_{\gamma f}$ is nonexpansive in the general case



- (fixed-points of $C_{\gamma f}$ coincide with fixed-points of $\mathrm{prox}_{\gamma f}$)

More properties of reflected proximal operator

• if ∇f is σ -strongly monotone and β -Lipschitz then $C_{\gamma f}$ is $\max\left(\frac{1-\gamma\sigma}{1+\gamma\sigma},\frac{\gamma\beta-1}{1+\gamma\beta}\right)$ -contractive



• contraction factor optimized for $\gamma=\frac{1}{\sqrt{\sigma\beta}}$ (gives a contraction factor of $\frac{\sqrt{\beta/\sigma}-1}{\sqrt{\beta/\sigma}+1}$)

Outline

- operator theory
- operators
 - gradient step operator
 - · proximal operator
 - reflected proximal operator
- composite optimization algorithms
 - forward-backward splitting
 - linear convergence and preconditioning
 - Douglas-Rachford splitting
 - linear convergence and preconditioning
- preconditioning heuristics
- · numerical results

Composite optimization problems

we consider composite optimization problems of the form

minimize
$$f(x) + g(Ax)$$

where

- f and g are proper, closed, and convex
- A is a real matrix
- introduce $\hat{g} := g \circ A$ to get primal problem

minimize
$$f(x) + \hat{g}(x)$$
 (P)

ullet introduce $\hat{f}:=f^*\circ (-A^T)$ to get dual problem

minimize
$$\hat{f}(y) + g^*(y)$$
 (D)

Optimality conditions

primal (P) and dual (D) problems have form

minimize
$$\psi(x) + \phi(x)$$

- assume ψ is β -smooth
- x optimal solution to composite problem iff

$$x = \operatorname{prox}_{\gamma\phi}((I - \gamma\nabla\psi)x)$$

 \bullet algorithm: find fixed point to operator $\mathrm{prox}_{\gamma\phi}\circ (I-\gamma\nabla\psi)$

Forward-backward splitting

FB-splitting obtained by iterating optimality conditions

$$x^{k+1} = \operatorname{prox}_{\gamma\phi}((I - \gamma\nabla\psi)x^k)$$

- (also known as proximal gradient method)
- convergence
 - $\operatorname{prox}_{\gamma\phi}$ is firmly nonexpansive $(\frac{1}{2}$ -averaged)
 - $(I \gamma \nabla \psi)$ is α -averaged if $\gamma = 2\alpha/\beta$
 - \bullet composition of averaged operators averaged \Rightarrow convergence

Linear convergence

- assume that ψ is σ -strongly convex and β -smooth
- $(I \gamma \nabla \psi)$ is $\max(|1 \gamma \sigma|, |\gamma \beta 1|)$ -contractive
- optimal $\gamma = \frac{2}{\sigma + \beta} \Rightarrow (I \gamma \nabla \psi)$ is $\frac{\beta/\sigma 1}{\beta/\sigma + 1}$ -contractive
- $\operatorname{prox}_{\gamma\phi}$ (firmly) nonexpansive
 - \Rightarrow FB-operator $\mathrm{prox}_{\gamma\phi}\circ (I-\gamma\nabla\psi)$ is $\frac{\beta/\sigma-1}{\beta/\sigma+1}$ -contractive
 - \Rightarrow FB-splitting converges linearly with factor $\frac{\beta/\sigma-1}{\beta/\sigma+1}$

Optimal parameter selection and preconditioning

- \bullet convergence factor minimized by letting $\gamma = \frac{2}{\beta + \sigma}$
- FB splitting converges linearly with factor $\frac{\beta/\sigma-1}{\beta/\sigma+1}$
- precondition by minimizing β/σ (i.e., reduce conditioning)

Example – Quadratic case

precondition primal problem (P) (i.e., precond. f)

$$\begin{aligned} \bullet \ f(x) &= \frac{1}{2} x^T H x + \xi^T x \\ \Rightarrow \beta_f &= \lambda_{\max}(H) \text{ and } \sigma_f = \lambda_{\min}(H) \end{aligned}$$

- introduce Tq = x
- $f_T(q) = f(Tq) = \frac{1}{2}q^T T^T H T q + \xi^T T q$ $\Rightarrow \beta_{f_T} = \lambda_{\max}(T^T H T) \text{ and } \sigma_{f_T} = \lambda_{\min}(T^T H T)$
- choose T diagonal to not increase computational complexity \Rightarrow minimize condition number of T^THT subject to T diagonal

Example – Quadratic case

precondition dual problem (D) (i.e., precond. $\hat{f} = f^* \circ (-A^T)$)

- $f(x) = \frac{1}{2}x^T H x + \xi^T x$
- $$\begin{split} \bullet \ \hat{f}(\mu) &= \tfrac{1}{2} (\xi + A^T \mu)^T H^{-1} (\xi + A^T \mu) \\ &\Rightarrow \beta_{\hat{f}} = \lambda_{\max} (A H^{-1} A^T) \text{ and } \sigma_{\hat{f}} = \lambda_{\min} (A H^{-1} A^T) \end{split}$$
- introduce $E^T \nu = \mu$
- $\hat{f}_E(\nu) = f(E^T \nu) = \frac{1}{2} (\xi + A^T E^T \mu)^T H^{-1} (\xi + A^T E^T \mu)$ $\Rightarrow \beta_{\hat{f}_E} = \lambda_{\max} (EAH^{-1}A^T E^T)$ and $\sigma_{\hat{f}_E} = \lambda_{\min} (EAH^{-1}A^T E^T)$
- choose E diagonal to not increase computational complexity \Rightarrow minimize condition nbr of $EAH^{-1}A^TE^T$ s.t. E diagonal

Acceleration

• fast proximal gradient method

$$y^{k} = x^{k} + \theta^{k}(x^{k} - x^{k-1})$$
$$x^{k+1} = \operatorname{prox}_{\gamma\phi}((I - \gamma \nabla \psi)y^{k})$$

preconditioning improves performance of FB-operator
 same preconditioning can be used with acceleration

Optimality conditions

• composite problem

minimize
$$\psi(x) + \phi(x)$$

• x optimal solution to such problems iff

$$z = C_{\gamma\psi}C_{\gamma\phi}z$$
 $x = \operatorname{prox}_{\gamma\phi}(z)$

 \bullet find fixed-point to $C_{\gamma\psi}C_{\gamma\phi}$ to solve problem

Generalized Douglas-Rachford splitting

• iterate $C_{\gamma\psi}C_{\gamma\phi}$ to find fixed-point (Peaceman-Rachford splitting)

$$z^{k+1} = C_{\gamma\psi}C_{\gamma\phi}z^k$$

- $C_{\gamma\psi}$ and $C_{\gamma\phi}$ are nonexpansive, so is composition \Rightarrow not guaranteed to converge in general case
- introduce averaging with $\alpha \in (0,1)$:

$$z^{k+1} = ((1 - \alpha)I + \alpha C_{\gamma\psi} C_{\gamma\phi})z^k$$

- $\bullet \ \alpha = 0.5$: Douglas-Rachford splitting
- $\alpha = 0.5$ applied to (D) : ADMM
- iteration of averaged operator converges to fixed-point

Linear convergence

- assume that ψ is σ -strongly convex and β -smooth
- $C_{\gamma\psi}$ is $\max\left(\frac{1-\gamma\sigma}{1+\gamma\sigma},\frac{\gamma\beta-1}{1+\gamma\beta}\right)$ -contractive (so is $C_{\gamma\psi}C_{\gamma\phi}$)
- D-R operator $((1-\alpha)I + \alpha C_{\gamma\psi}C_{\gamma\phi})$ is $(1-\alpha) + \alpha \max\left(\frac{1-\gamma\sigma}{1+\gamma\sigma}, \frac{\gamma\beta-1}{1+\gamma\beta}\right)$ -contractive \Rightarrow D-R algorithm converges linearly with same factor

Optimal parameter selection and preconditioning

- convergence factor $(1-\alpha) + \alpha \max\left(\frac{1-\gamma\sigma}{1+\gamma\sigma}, \frac{\gamma\beta-1}{1+\gamma\beta}\right)$
- optimal parameters
 - $\alpha = 1$ (i.e. Peaceman-Rachford splitting)
 - selection $\gamma = \frac{1}{\sqrt{\sigma\beta}}$ \Rightarrow convergence rate $\frac{\sqrt{\beta/\sigma}-1}{\sqrt{\beta/\sigma}+1}$
- ullet precondition by minimizing eta/σ

Outline

- operator theory
- operators
 - gradient step operator
 - · proximal operator
 - reflected proximal operator
- composite optimization algorithms
 - forward-backward splitting
 - linear convergence and preconditioning
 - Douglas-Rachford splitting
 - linear convergence and preconditioning
- preconditioning heuristics
- · numerical results

Preconditioning heuristics

- ullet assumption that ψ both strongly convex and smooth is rare
- can do heuristic extensions to cover wider classes
- here: focus on preconditioning heuristic for MPC problems

MPC problem on composite form

• MPC optimization problem

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^THx + \xi_t^Tx \\ \text{subject to} & Bx = b\bar{x}_t \\ & \underline{d}_t \leq Cx \leq \bar{d}_t \end{array}$$

can be cast on the form

minimize
$$f(x) + g(Ax)$$

• splitting 1:

$$f(x) = \frac{1}{2}x^T H x + \xi_t^T x + I_{Bx=b\bar{x}_t}(x)$$

$$g(y) = I_{\underline{d}_t \le y \le \bar{d}_t}(y)$$

$$A = C$$

• splitting 2:

$$f(x) = \frac{1}{2}x^{T}Hx + \xi_{t}^{T}x + I_{\underline{d}_{t} \leq Cx \leq \overline{d}_{t}}(x)$$

$$g(y) = I_{y=bx_{t}}(y)$$

$$A = B$$

Properties

- for splitting 1 and 2:
 - f is 1-strongly convex w.r.t. $\|\cdot\|_H$
 - f^* is 1-smooth w.r.t. $\|\cdot\|_{H^{-1}}$
 - $\hat{f} = f^* \circ (-A^T)$ is 1-smooth w.r.t. $\|\cdot\|_{AH^{-1}A^T}$
- implications:
 - primal formulation (P) has a nonsmooth strongly convex term
 ⇒ can be solved by DR-splitting but not FB-splitting
 - dual formulation (D) has a non-strongly convex smooth term
 ⇒ can be solved by DR-splitting and FB-splitting

Heuristic preconditioning

for both splitting 1 and 2:

$$f(x) = \frac{1}{2} ||x||_H^2 + \xi^T x + I_{x \in \mathcal{X}}(x)$$

where $I_{x \in \mathcal{X}}$ is indicator function for different sets

• heuristic: do preconditioning and parameter selection for quadratic part (i.e., assume $I_{x\in\mathcal{X}}=0$)

Primal and dual preconditioning

- preconditioning of primal formulation

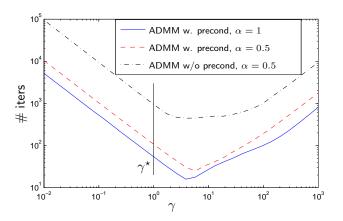
 - precondition quadratic part $(\frac{1}{2}||x||_H^2 + \xi^T x)$ minimize condition number of $T^T H T$ subject to T diagonal
- preconditioning of dual formulation
 - precondition quadratic part $(\frac{1}{2}(\xi + A^T \mu)^T H^{-1}(\xi + A^T \mu))$
 - minimize condition number of $EAH^{-1}A^TE^T$ s.t. E diagonal
- if matrix positive semi definite only
 - minimize ratio between largest and smallest nonzero eigenvalues

Application - MPC of pitch angle in aircraft

- 4 states
- 2 outputs
- 2 inputs
- control horizon 10
- hard input constraints
- soft output constraints
- 100 decision variables
- diagonal quadratic positive definite cost matrices
- \bullet condition number of Hessian: 10^{10}

Numerical evaluation - ADMM

Figure: Average number of iterations for different γ -values, with and without preconditioning, and for different relaxation α .



- theoretical optimal: $\gamma^* = 1$, $\alpha = 1$
- empirical optimal: $\gamma = 4$, $\alpha = 1$

Numerical evaluation

- fast dual FB-splitting with and without preconditioning
- ADMM with and without preconditioning
- MATLAB implementation

			exec ti	me (ms)	nbr	iters
alg.	precond	split./param	avg.	max	avg.	max
FDFBS	у	1/-	1.2	5.8	20.0	105
FDFBS	n	1/-	98.9	679.4	1850.1	12783
FDFBS	у	2/-	2.3	12.1	21.7	102
FDFBS	n	2/-	4713.9	28411	50845	308210
ADMM	у	1/th. opt.	4.5	15.3	54.2	197
ADMM	у	1/emp. opt.	1.6	3.6	15.6	43
ADMM	n	$1/\mathrm{emp.}$ opt.	17.2	82.5	224.3	1127

Numerical evaluation - C

C implementation comparison to FORCES and MOSEK

		exec time (ms)		
algorithm	splitting	avg.	max	
FDFBS	1	0.061	0.196	
FDFBS	2	0.079	0.232	
FORCES	-	0.347	0.592	
MOSEK	-	4.9	5.4	

- FDFBS: preconditioned fast dual forward-backward splitting
- FORCES: code generator for model predictive control problems based on interior point methods
- MOSEK: commercial QP solver

Thank you

Questions?