
Embedded Optimization for ���
Mixed Logic Dynamical Systems	

Alexander Domahidi ���
Joint work with Damian Frick and Manfred Morari	

EMBOPT Workshop���
IMT Lucca, Italy	

September 8, 2014	

Application: Optimal Traffic Control	

▶  Discrete signaling with switching cost	

▶  Logical constraints on signaling	

▶  Control objective: minimize queue size	

Medium-to-large-scale hybrid MPC problem	

Source: sunshinekelly.com	

2	

Application: Fuel Cell Power Management	

▶  Fuel cell power varied continuously, but discontinuity in losses	

▶  Super-capacitor balances power	

Control objectives:
▶  Meet (predicted) load profile	

▶  Minimize losses (piecewise quadratic cost)	

▶  Limit number of switchings to two per minute	

3	

Simulation profile for horizon 5s – losses: 31.5 kJ	

4	

Application: Fuel Cell Power Management	

Fuel cell power	

Losses reduced by 10% by long control horizon	

5	

Simulation profile for horizon 60s – losses: 28.9 kJ	

Application: Fuel Cell Power Management	

Application: Multi-Level Inverters for Drives	

▶  High efficiency and power quality	

	

9-level induction motor drive:	

•  6 capacitor voltages	

•  3 motor currents	

•  15 independent switches ���

operated at frequency > 1kHz	

	

	

	

▶  Control objective: track current reference	

▶  MPC dramatically improves losses, distortion and transient behavior

[Geyer et al., 2011]	

6	

Needs ultra-fast solver to compute switch positions in real-time	

Embedded Solvers for Hybrid MPC	

▶  Main idea: use fast convex sub-problem solvers + branch-and-bound	

▶  On FPGA, 1 MHz per sub-problem possible [Jerez et al., 2013]	

à 1000 convex problems per millisecond – powerful decision making!	

▶  In this talk:
•  Fast code-generated interior point solvers to cover general problems 	

•  Problem relaxations: exploit receding horizon + feedback in MPC	

•  Pre-processing: detect infeasibility or sub-optimality without solving

convex sub-problem	

	

Goal: solver for hybrid MPC on embedded platforms	

7	

Outline	

1.  MLD models & hybrid MPC	

2.  Solution of mixed-integer programs via branch-and-bound	

•  Standard branch & bound	

•  Multistage problems & FORCES	

3.  Complexity reduction for embedded solvers	

•  Rounding & branching strategy	

•  Relaxations of optimality & feasibility	

•  Pre-computations on binary constraints	

4.  Summary	

8	

Outline	

1.  MLD models & hybrid MPC	

2.  Solution of mixed-integer programs via branch-and-bound	

•  Standard branch & bound	

•  Multistage problems & FORCES	

3.  Complexity reduction for embedded solvers	

•  Rounding & branching strategy	

•  Relaxations of optimality & feasibility	

•  Pre-computations on binary constraints	

4.  Summary	

9	

Hybrid Systems	

A	

B	

C	

C	

A	

B	

B	

C	

x(k + 1) = f (x(k), u(k))

y(k) = g(x(k), u(k))

X = {1, 2, 3, 4, 5}
U = {A,B, C}

system	

y(t)u(t)

x � Rn

u � Rm

y � Rp

10	

Hybrid Systems with Affine Dynamics	

▶  Descriptive enough to capture system behavior	

•  continuous dynamics (physical laws)	

•  logic components (switches, automata)	

•  interconnection between logic and dynamics	

▶  Simple enough for analysis and synthesis	

•  controllability, observability, reachability	

•  controller / filter design	

•  stability & constraint satisfaction	

11	

Mixed Logic Dynamical (MLD) Models	

▶  Discrete time linear dynamics and logic can be combined into ���

Mixed Logic Dynamical (MLD) form [Bemporad & Morari, 1999]	

▶  Mature modeling tools exists, e.g. HYSDEL [Torrisi & Bemporad, 2004]	

▶  Equivalent to PWA, linear complementarity, max-min-plus-scaling	

▶  Analysis and synthesis problems can be solved via mixed-integer

(linear) programs. [Heemels, De Schutter, Bemporad, 2001]	

	

12	

x � Rnc � {0, 1}nb

u � Rmc � {0, 1}mb

y � Rpc � {0, 1}pb

w � Rqc � {0, 1}qb

xk+1 = Axk + Buuk + Bwwk + Baf f

yk = Cxk +Duuk +Dwwk +Daf f

Exxk + Euuk + Ewwk � Eaf f

Hybrid MPC Problems with MLD Dynamics	

▶  Optimization problem is mixed-integer QP (NP-hard)	

▶  Desktop software often solves medium-scale problems efficiently	

x � Rnc � {0, 1}nb

u � Rmc � {0, 1}mb

w � Rqc � {0, 1}qb

Embedded solvers exist only for small-scale problems (explicit)	

13	

min
x,u,w

N�1�

k=0

xTk Qx
T
k + uTk Ruk + xTNPxN

W�X� x0 = x

xk+1 = Axk + Buuk + Bwwk + Baf f

Exxk + Euuk + Ewwk � Eaf f

xk � Xk , xN � Xf , uk � Uk

Outline	

1.  MLD models & hybrid MPC	

2.  Solution of mixed-integer programs via branch-and-bound	

•  Standard branch & bound	

•  Multistage problems & FORCES	

3.  Complexity reduction for embedded solvers	

•  Rounding & branching strategy	

•  Relaxations of optimality & feasibility	

•  Pre-computations on binary constraints	

4.  Summary	

14	

Standard branch-and-bound	

enumerate	

15	

▶  Find optimal solution to MIQP without enumerating all possibilities	

 cost	

minimizer	

Standard branch-and-bound	

16	

▶  Find optimal solution to MIQP without enumerating all possibilities	

QPs	

optimal	

 feasible	

Standard branch-and-bound	

17	

▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and

integer-feasible solutions	

relaxations (QPs)	

Standard branch-and-bound	

18	

▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and

integer-feasible solutions	

Standard branch-and-bound	

19	

▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and

integer-feasible solutions	

 	

 	

lower bound:	

Standard branch-and-bound	

20	

▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and

integer-feasible solutions	

feasible	

rounding:	

upper bound:	

Standard branch-and-bound	

21	

▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and

integer-feasible solutions	

Standard branch-and-bound	

22	

▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and

integer-feasible solutions	

branch	

Standard branch-and-bound	

23	

▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and

integer-feasible solutions	

infeasible	

Standard branch-and-bound	

24	

▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and

integer-feasible solutions	

prune	

infeasible	

infeasible	

Standard branch-and-bound	

25	

▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and

integer-feasible solutions	

Standard branch-and-bound	

26	

▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and

integer-feasible solutions	

branch	

▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and

integer-feasible solutions	

Standard branch-and-bound	

27	

▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and

integer-feasible solutions	

	

▶  B&B code size: ~100 lines of C code	

Standard branch-and-bound	

28	

Key ingredient: fast, simple low-level (QC)QP solver	

Multi-stage Convex QCQPs	

▶  Structure allows for significant speedups	

▶  Hybrid MPC sub-problems fit this problem structure	

29	

TPUPTPaL
�N

i=1
1
2v

T
i Hivi + f T

i vi

Z\IQLJ[[V v i � vi � v̄i

Aivi � bi

vT
i Qi ,jvi + lTi,jvi � ri ,j

Civi +Di+1vi+1 = ci

separable objective	

upper/lower bounds	

affine inequalities	

quadratic constraints	

inter-stage equalities	

Idea: use code-generated convex solver for B&B sub-problems	

FORCES Exploits the Multistage Structure	

▶  Main computation in interior point methods: solve linear system	

1. Compute Y (~80% of cost), 2. factor (~20%), 3. fwd./bkwd. solve	

▶  Exploit block-wise structure in KKT system	

30	

Multistage QCQP
 Search Direction Computation
 Pos. Def. System

New Method for Computing Y
 ✓  Saves flops"
w.r.t. literature

✓  Cache efficient

✓  Numerically robust

✓  Parallelizable

✓  Enables further

structure exploitation

Coefficient Matrix Y

r: block size

Y = LLT

2r3

Fine-Grained Structure Exploitation	

▶  Additional structure exploitation possible for special cases:	

▶  Example for typical MPC problem:	

•  Stages 0...N-1: Q, R diagonal	

•  Stage N: P dense	

à ~75% complexity reduction

31	

Objective	

9.3x
 9.3x
 1.4x

1.0x
 1.0x
 1.0x

6.7x
 6.7x
 1.4x

1.4x
 1.4x
 1.4x (1.8x if M=Q)

Co
ns

tra
int

s	

Theoretical speedups���
compared to base case	

[Domahidi et al., CDC 2012]	

Structure exploitation can be automatized by code generation	

The FORCES Code Generator	

Multistage QCQP

?

Embedded Hardware

▶  C code generation of primal-
dual Mehrotra interior point
solvers	

▶  LPs, QPs, QCQPs	

▶  Parametric problems	

▶  Multi-core platforms	

▶  Library-free	

▶  Available: forces.ethz.ch	

Problem description

stage = MultiStageProblem(N+1);
for i = 1:N+1
% dimensions
stages(i).dims.n = 10;
stages(i).dims.r = 5;
stages(i).dims.lb = 3;

% cost
stages(i).cost.H = Hi;
stages(i).cost.f = fi;

% inequalities
stages(i).ineq.b.lbidx = 3:5;
stages(i).ineq.b.lb = zeros(3,1);

% equalities
stages(i).eq.C = Ci;
stages(i).eq.c = ci;
stages(i).eq.D = Di;
end
generateCode(stages);

Solver (ANSI-C)

MATLAB MEX interface"
for rapid prototyping

solver.h
solver.c
solver.m
solvermex.c
makemex

Generated Code

32	

Speedups Compared to IBM CPLEX	

▶  Standard MPC problem for oscillating���
chain of masses (on Intel i5 @3.1 GHz)	

▶  CPLEX N/A on embedded systems	

CPLEX

Solve time: 5470 μs
Code size: 11700 KB

FORCES

Solve time: 90 μs
Code size: 52 KB

80x!

10x!
2x!

33	

Simple B&B Strategy with FORCES	

▶  Generate a solver for QCQP with parametric lower- and upper

bounds:	

▶  Relaxation: for binary variables	

▶  Set to 0 or 1 to fix variable j in stage i	

34	

0 � vi � 1

v i ,j = v̄i ,j

à Low-footprint MI-QCQP solver for hybrid MPC	

TPUPTPaL
�N

i=1
1
2v

T
i Hivi + f T

i vi

Z\IQLJ[[V v i � vi � v̄i

Aivi � bi

vT
i Qi ,jvi + lTi,jvi � ri ,j

Civi +Di+1vi+1 = ci

Change in each
B&B sub-problem	

Outline	

1.  MLD models & hybrid MPC	

2.  Solution of mixed-integer programs via branch-and-bound	

•  Standard branch & bound	

•  Multistage problems & FORCES	

3.  Complexity reduction for embedded solvers	

•  Rounding & branching strategy	

•  Relaxations of optimality & feasibility	

•  Pre-computations on binary constraints	

4.  Summary	

35	

Branch-and-bound: Branching Strategy	

▶  Branch-and-bound tree is explored depth-first	

•  Likely to find feasible solutions early	

•  Low memory complexity (linear in #binaries)	

▶  Use stage-in-order heuristic (fix in order)	

•  Motivated by receding horizon policy – fix early stages first	

▶  In current stage, branch on most ambiguous relaxed variable, ���
i.e. the one closest to 0.5 [Boyd & Mattingley, EE364b notes]	

36	

i = 1, 2, . . . , N

Branch-and-bound: Rounding Schemes	

▶  Nearest-neighbor: computationally efficient, solution can be infeasible	

▶  Combinatorial Integral Approximation [Sager et al. 2014]	

•  Need to solve MILP, but theoretical guarantees on approx. quality	

▶  Sum-up-rounding: explicit solution of CIA if [Sager et al. 2012]	

37	

�̃ � argmin
���

max
k=0,...,N

max
j

�����

k�

l=0

�
��l ,j � �l ,j

�
�����

�̃k,j �
�
1 PM

�k
l=0 �

�
l ,j �

�k�1
l=0 �̃l ,j � 0.5

0 V[OLY^PZL

� � {0, 1}n

Outline	

1.  MLD models & hybrid MPC	

2.  Solution of mixed-integer programs via branch-and-bound	

•  Standard branch & bound	

•  Multistage problems & FORCES	

3.  Complexity reduction for embedded solvers	

•  Rounding & branching strategy	

•  Relaxations of optimality & feasibility	

•  Pre-computations on binary constraints	

4.  Summary	

38	

Relaxations	

▶  Only first control action is applied in a receding horizon scheme	

à Can relax later stages to improve solve time	

▶  Relax integrality or optimality after M < N stages	

39	

Trade-off computation time for performance 	

Relaxation of Optimality	

	

	

	

▶  Relax optimality after M stages, preserve feasibility for all N stages	

•  Often N-step feasible, M-step optimal solutions of sufficient quality for

closed-loop control	

•  Reduces complexity if feasible solutions can be found quickly	

▶  Solution is feasible for original problem, but likely to be suboptimal	

40	

Relaxation of Integer Feasibility	

	

	

	

▶  Relax integer feasibility after M stages	

•  Maintain benefits of long horizons for continuous dynamics	

•  First control move likely to provide good performance	

▶  Effective reduction of #binaries	

41	

42	

On MacBook Pro 2.6 GHz	

▶  Hybrid MPC problem with 60 binary and 242 continuous variables	

▶  Sampling time of 1s met with 1% performance deterioration	

▶  Max. 208 QPs solved	

Numerical Results: Fuel Cell Control	

Maximum solution
time [s]	

Performance deterioration compared���
to optimal closed-loop cost (N=60)	

Speedups Compared to IBM CPLEX	

43	

227x	

50x	

25x	
 16x	
 10x	

0	

50	

100	

150	

200	

250	

1	
 5	
 10	
 15	
 20	

▶  Speedup of median compute time w.r.t. CPLEX solving full problem:	

	

▶  In all cases with M>5: performance deterioration less than 2%	

9x	
 9x	

7x	

6x	

5x	

0	

2	

4	

6	

8	

10	

1	
 5	
 10	
 15	
 20	

“integer horizon” length M	

Relaxation of integer feasibility	

 Relaxation of optimality	

“optimality horizon” length M	

Numerical Results: Optimal Traffic Control	

▶  Horizon length N=5: 25 binary variables, 105 continuous variables	

▶  Number of QPs applying standard approach without relaxations:	

▶  Solution time ~20 seconds à too slow	

▶  ~96% of time for “solving” infeasible sub-problems	

44	

0	

2000	

4000	

6000	

8000	

10000	

12000	

NNR	
 CIAR	
 SUR	

Rounding scheme	

#QPs

Outline	

1.  MLD models & hybrid MPC	

2.  Solution of mixed-integer programs via branch-and-bound	

•  Standard branch & bound	

•  Multistage problems & FORCES	

3.  Complexity reduction for embedded solvers	

•  Rounding & branching strategy	

•  Relaxations of optimality & feasibility	

•  Pre-computations on binary constraints	

4.  Summary	

45	

Pre-processing: Infeasibility/Sub-optimality Pruning	

▶  Main idea: exploit structure of constraints & cost on binaries to
prune sub-trees without solving convex sub-problem	

▶  Infeasibility pruning	

▶  Sub-optimality pruning	

46	

Goal: Pre-compute at codegen for efficient pruning at run time	

Pre-processing: Extended Constraint Functions	

▶  Consider a constraint depending only on binaries:	

	

▶  Each B&B node can be represented by a set ���
of possible binaries	

▶  Goal: detect infeasibility of for all efficiently 	

à Extended constraint function (ECF):���
���
���
���
���
with property: ���
(sufficient condition for infeasibility)	

47	

ge(I) � min
�

g(�)

Z�[� � � I

ge(I) > 0� g(�) > 0 �� � I

I � 2{0,1}
nb

g(�) � 0, � � {0, 1}nb

g(�) � � I

Pre-processing: Extended Constraint Functions	

▶  ECF is a parametric integer program	

▶  Cheap to evaluate for	

•  Constraint on #switchings (fuel cell, power electronics)	

•  Exclusive logical constraints (traffic control, multilevel inverter)	

•  Lookup table, decision tree (for small number of variables)	

48	

ge(I) � min
�

g(�)

Z�[� � � I

ge(·)

Infeasibility Pruning via ECFs	

▶  Code for evaluating is generated at codegen time	

▶  Evaluating is often more efficient than solving QP	

▶  At each B&B node, evaluate to test for infeasibility	

▶  Example: constraint on #switchings (fuel cell)	

•  Trivial evaluation: set relaxed binaries to zero & count fixed 1‘s	

49	

ge(I)

ge (I) � min
��I

k�

j=k�Ns+1

�j � nswitch

# of past switchings 	

window length (for past)	

ge(·)
ge(·)

Use to prune infeasible sub-trees	

ge(·)

ge(·)

Sub-optimality Pruning via ECFs	

▶  Key assumption 1: optimization problem has the form	

where is the incidence matrix of the undirected graph ���
modeling the dependency of binaries	

▶  Models logical constraints that are exclusive���
Example traffic control: only certain combinations of signals on green	

▶  Consequence: every feasible is an independent set ���
(i.e. nodes are not connected by edges)	

min
z,�

f (z, �)

Z�[� (z, �) � C � Rnc � {0, 1}nb

ITG � � 1

IG G � (V, E)

�

50	

Sub-optimality Pruning via ECFs	

▶  Key assumption 2: cost does not increase when setting a 0 to 1, i.e. ���
���
for all feasible :���
���
where���
���
���
Example traffic control: set as many signals to green as feasible	

▶  Consequence: every optimal is a maximum independent set���
(i.e. no node can be added such that all nodes are not connected)	

▶  Set of maximum independent sets can be pre-computed	

	

�

�, �̂ � {0, 1}nb ���1 > ��̂�1 � h(�) � h(�̂)

h (�) �
�
minz

�
f (z, �) : (z, �) � C, ITG � � 1

�
PM MLHZPISL

+� V[OLY^PZL

Use to prune non-maximum (suboptimal) independent sets	

ge(·)

ge(·)
51	

Numerical Results: Optimal Traffic Control	

▶  For horizon length of 5: 25 binary variables, 105 continuous variables	

52	

0	

2000	

4000	

6000	

8000	

10000	

12000	

NNR	
 CIAR	
 SUR	

Rounding scheme	

397	
 413	
 371	

0	

2000	

4000	

6000	

8000	

10000	

12000	

NNR	
 CIAR	
 SUR	

Rounding scheme	

No infeasibility/sub-optimality pruning With infeasibility/sub-optimality pruning	

~30x fewer QPs

Infeasibility & sub-optimality pruning drastically reduces #QPs	

Numerical Results: Traffic Control	

53	

(no	
 relaxa;ons)	

	

▶  Median computation times compared to CPLEX: 	

•  30x slower for N=10 (full problem)	

•  3x slower for M=5 (2.3% performance loss)	

Approaching speed of desktop solvers with embeddable code	

Maximum solution
time [s]	

*: Performance deterioration
compared to optimal closed-
loop cost (N=10)	

*2.3%	

*12.2%	

Summary	

▶  Many control problems need solution of MIPs on embedded systems	

▶  First approach toward embedded solver for hybrid MPC:	

•  Standard branch-and-bound + tailored, generated interior-point solver	

•  Stage-in-order + most-ambiguous branching, nearest-neighbor rounding	

•  Code size few tens of KB	

▶  Pre-processing: detect infeasible/suboptimal nodes w/o solving QPs	

•  Extended constraint functions can be generated at codegen time	

•  Often much faster to evaluate than convex sub-problem	

▶  Future work:	

•  First-order sub-problem solvers (ADMM, gradient projection, …)	

•  Generate more tree-pruning cuts at code generation time	

54	

à Simple embeddable solver approaching desktop performance	

