Embedded Optimization for Mixed Logic Dynamical Systems

Alexander Domahidi
Joint work with Damian Frick and Manfred Morari

EMBOPT Workshop
IMT Lucca, Italy
September 8, 2014
Application: Optimal Traffic Control

- Discrete signaling with switching cost
- Logical constraints on signaling
- **Control objective:** minimize queue size

Medium-to-large-scale hybrid MPC problem
Application: Fuel Cell Power Management

- Fuel cell power varied continuously, but discontinuity in losses
- Super-capacitor balances power

Control objectives:
- Meet (predicted) load profile
- Minimize losses (piecewise quadratic cost)
- Limit number of switchings to two per minute
Application: Fuel Cell Power Management

Simulation profile for horizon 5s – losses: 31.5 kJ
Application: Fuel Cell Power Management

Simulation profile for horizon 60s – losses: 28.9 kJ

Losses reduced by 10% by long control horizon
Application: Multi-Level Inverters for Drives

- High efficiency and power quality

9-level induction motor drive:
 - 6 capacitor voltages
 - 3 motor currents
 - 15 independent switches operated at frequency > 1kHz

- Control objective: track current reference
- MPC dramatically improves losses, distortion and transient behavior [Geyer et al., 2011]

Needs ultra-fast solver to compute switch positions in real-time
Embedded Solvers for Hybrid MPC

- **Main idea:** use fast convex sub-problem solvers + branch-and-bound
- **On FPGA,** 1 MHz per sub-problem possible [Jerez et al., 2013]
 → 1000 convex problems per millisecond – powerful decision making!

- **In this talk:**
 - Fast code-generated interior point solvers to cover general problems
 - Problem relaxations: exploit receding horizon + feedback in MPC
 - Pre-processing: detect infeasibility or sub-optimality without solving convex sub-problem

Goal: solver for hybrid MPC on embedded platforms
Outline

1. MLD models & hybrid MPC
2. Solution of mixed-integer programs via branch-and-bound
 - Standard branch & bound
 - Multistage problems & FORCES
3. Complexity reduction for embedded solvers
 - Rounding & branching strategy
 - Relaxations of optimality & feasibility
 - Pre-computations on binary constraints
4. Summary
Outline

1. MLD models & hybrid MPC
2. Solution of mixed-integer programs via branch-and-bound
 • Standard branch & bound
 • Multistage problems & FORCES
3. Complexity reduction for embedded solvers
 • Rounding & branching strategy
 • Relaxations of optimality & feasibility
 • Pre-computations on binary constraints
4. Summary
Hybrid Systems

\[X = \{1, 2, 3, 4, 5\} \]
\[U = \{A, B, C\} \]

Computer Science
Finite State Machine

Control Theory
Continuous Dynamical Systems

\[u(t) \rightarrow \text{system} \rightarrow y(t) \]
\[x \in \mathbb{R}^n \]
\[u \in \mathbb{R}^m \]
\[y \in \mathbb{R}^p \]

\[x(k+1) = f(x(k), u(k)) \]
\[y(k) = g(x(k), u(k)) \]
Hybrid Systems with Affine Dynamics

- **Descriptive** enough to capture system behavior
 - continuous dynamics (physical laws)
 - logic components (switches, automata)
 - interconnection between logic and dynamics

- **Simple** enough for analysis and synthesis
 - controllability, observability, reachability
 - controller / filter design
 - stability & constraint satisfaction
Mixed Logic Dynamical (MLD) Models

- Discrete time linear dynamics and logic can be combined into Mixed Logic Dynamical (MLD) form [Bemporad & Morari, 1999]

\[
x_{k+1} = Ax_k + B_u u_k + B_w w_k + B_{aff} \\
y_k = Cx_k + D_u u_k + D_w w_k + D_{aff} \\
E_x x_k + E_u u_k + E_w w_k \leq E_{aff}
\]

- Mature modeling tools exists, e.g. HYSDEL [Torrisi & Bemporad, 2004]
- Equivalent to PWA, linear complementarity, max-min-plus-scaling

\[
x \in \mathbb{R}^{nc} \times \{0, 1\}^{nb} \\
u \in \mathbb{R}^{mc} \times \{0, 1\}^{mb} \\
y \in \mathbb{R}^{pc} \times \{0, 1\}^{pb} \\
w \in \mathbb{R}^{qc} \times \{0, 1\}^{qb}
\]
Hybrid MPC Problems with MLD Dynamics

\[
\begin{align*}
\min_{x,u,w} \sum_{k=0}^{N-1} x_k^T Q x_k + u_k^T R u_k + x_N^T P x_N \\
\text{s.t. } x_0 = x \\
x_{k+1} = A x_k + B_u u_k + B_w w_k + B_{aff} \\
E_x x_k + E_u u_k + E_w w_k \leq E_{aff} \\
x_k \in \mathcal{X}_k, \quad x_N \in \mathcal{X}_f, \quad u_k \in \mathcal{U}_k
\end{align*}
\]

- Optimization problem is mixed-integer QP (NP-hard)
- Desktop software often solves medium-scale problems efficiently

Embedded solvers exist only for small-scale problems (explicit)
Outline

1. MLD models & hybrid MPC
2. Solution of mixed-integer programs via branch-and-bound
 • Standard branch & bound
 • Multistage problems & FORCES
3. Complexity reduction for embedded solvers
 • Rounding & branching strategy
 • Relaxations of optimality & feasibility
 • Pre-computations on binary constraints
4. Summary
Standard branch-and-bound

- Find optimal solution to MIQP without enumerating all possibilities

minimizer

\(z^*, j^* \)

cost

(0,0) (0,1) (1,0) (1,1)

enumerate
Standard branch-and-bound

- Find optimal solution to MIQP without enumerating all possibilities

QPs

(0,0) (0,1) (1,0) (1,1)

optimal feasible
Standard branch-and-bound

- Find optimal solution to MIQP without enumerating all possibilities
- Exploit bounds on optimal cost obtained from relaxations and integer-feasible solutions

relaxations (QPs)

(*,*)

(0,*)

(1,*)

Standard branch-and-bound

- Find optimal solution to MIQP without enumerating all possibilities
- Exploit bounds on optimal cost obtained from relaxations and integer-feasible solutions

\[(\ast,\ast) \rightarrow z, J\]
Standard branch-and-bound

- Find optimal solution to MIQP without enumerating all possibilities
- Exploit bounds on optimal cost obtained from relaxations and integer-feasible solutions

\[L = J \leq J^* \]
Standard branch-and-bound

- Find optimal solution to MIQP without enumerating all possibilities
- Exploit bounds on optimal cost obtained from relaxations and integer-feasible solutions

\[J([z]) = U \]

Rounding: \[[z] \] feasible
Standard branch-and-bound

- Find optimal solution to MIQP without enumerating all possibilities
- Exploit bounds on optimal cost obtained from relaxations and integer-feasible solutions
Standard branch-and-bound

- Find optimal solution to MIQP without enumerating all possibilities
- Exploit bounds on optimal cost obtained from relaxations and integer-feasible solutions
Standard branch-and-bound

- Find optimal solution to MIQP without enumerating all possibilities
- Exploit bounds on optimal cost obtained from relaxations and integer-feasible solutions
Standard branch-and-bound

- Find optimal solution to MIQP without enumerating all possibilities
- Exploit bounds on optimal cost obtained from relaxations and integer-feasible solutions
Standard branch-and-bound

- Find optimal solution to MIQP without enumerating all possibilities
- Exploit bounds on optimal cost obtained from relaxations and integer-feasible solutions
Standard branch-and-bound

- Find optimal solution to MIQP without enumerating all possibilities
- Exploit bounds on optimal cost obtained from relaxations and integer-feasible solutions
Standard branch-and-bound

- Find optimal solution to MIQP without enumerating all possibilities
- Exploit bounds on optimal cost obtained from relaxations and integer-feasible solutions

\[z, j, j < U \]
Standard branch-and-bound

- Find optimal solution to MIQP without enumerating all possibilities
- Exploit bounds on optimal cost obtained from relaxations and integer-feasible solutions

- B&B code size: ~100 lines of C code

Key ingredient: fast, simple low-level (QC)QP solver
Multi-stage Convex QCQPs

minimize \[\sum_{i=1}^{N} \frac{1}{2} v_i^T H_i v_i + f_i^T v_i \]

subject to \[v_i \leq v_i \leq \bar{v}_i \]

\[A_i v_i \leq b_i \]

\[v_i^T Q_{i,j} v_i + l_{i,j}^T v_i \leq r_{i,j} \]

\[C_i v_i + D_{i+1} v_{i+1} = c_i \]

- Structure allows for significant speedups
- Hybrid MPC sub-problems fit this problem structure

Idea: use code-generated convex solver for B&B sub-problems
FORCES Exploits the Multistage Structure

- Main computation in interior point methods: solve linear system

1. Compute Y (~80% of cost), 2. factor $Y = LL^T$ (~20%), 3. fwd./bkwd. solve

- Exploit block-wise structure in KKT system

Multistage QCQP

$$\min \sum_{i=0}^{N} l_i(v_i)$$

s.t. $g_i(v_i) \leq 0$

$L_i(v_{i-1}, v_i) = 0$

Search Direction Computation

Multistage QCQP

$$\begin{bmatrix} H & A^T & G^T & 0 \\ A & 0 & 0 & 0 \\ G & 0 & 0 & I \\ 0 & 0 & S & Z \end{bmatrix} \begin{bmatrix} \Delta v \\ \Delta y \\ \Delta z \\ \Delta s \end{bmatrix} = \begin{bmatrix} r_S \\ r_E \\ r_l \\ r_c \end{bmatrix}$$

Pos. Def. System

$$Y \Delta y = b$$

$$Y = A\Phi^{-1}A^T$$

$$\Phi = H + G^TSZ^{-1}G$$

Coefficient Matrix Y

$$\begin{bmatrix} Y_{0,0} & Y_{0,1} & 0 & \cdots & 0 \\ Y_{0,1}^T & Y_{1,1} & Y_{1,2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & Y_{N-1,N} \\ 0 & 0 & \cdots & Y_{N-1,N}^T & Y_{N,N} \end{bmatrix}$$

New Method for Computing Y

1. $L_i = \text{chol}(\Phi_i)$
2. $V_i = C_i/L_i^T$ (2/3r^3)
3. $W_i = D_i/L_i^T$ (r3)
4. $Y_{i,i} = V_{i-1}^T V_{i-1}$ (r3)
5. $Y_{i,i} + W_i^T W_i$ (r3)
6. $Y_{i,i+1} = W_i V_i^T$ (2r3)

Total flops \(20/3r^3\)

✓ Saves 2r^3 flops w.r.t. literature
✓ Cache efficient
✓ Numerically robust
✓ Parallelizable
✓ Enables further structure exploitation

r: block size
Fine-Grained Structure Exploitation

- Additional structure exploitation possible for special cases:

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Theoretical speedups compared to base case</th>
<th>Objective</th>
<th>$c_i^T v_i$</th>
<th>$v_i^T Q v_i$, Q diag.</th>
<th>$v_i^T Q v_i$, Q dense</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v \leq v_i \leq \bar{v}$</td>
<td>9.3x</td>
<td>9.3x</td>
<td>1.4x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F v_i \leq f_i$</td>
<td>1.0x</td>
<td>1.0x</td>
<td>1.0x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$v_i^T M v_i \leq r$, M diag.</td>
<td>6.7x</td>
<td>6.7x</td>
<td>1.4x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$v_i^T M v_i \leq r$, M dense</td>
<td>1.4x</td>
<td>1.4x</td>
<td>1.4x (1.8x if $M=Q$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Example for typical MPC problem: $\min \quad x_N^T P x_N + \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i$
 s.t. $x_0 = x$, $x_{i+1} = A x_i + B u_i$
 $x \leq x_i \leq \bar{x}$, $u \leq u_i \leq \bar{u}$,
 $x_N^T P x_N \leq \alpha$

[Domahidi et al., CDC 2012]

Structure exploitation can be automatized by code generation
The FORCES Code Generator

Multistage QCQP

\[
\begin{align*}
\min & \quad \frac{1}{2} \sum_{i=1}^{N} v_i^T H_i v_i + f_i^T v_i \\
\text{s.t.} & \quad z_i \leq v_i \leq \bar{v}_i \\
& \quad A_i v_i \leq b_i \\
& \quad v_i^T Q_{ij} v_i + l_{ij}^T v_i \leq r_{ij} \\
& \quad C_i v_i + D_{i+1} v_{i+1} = c_i
\end{align*}
\]

Embedded Hardware

⩾

Problem description

```matlab
stage = MultiStageProblem(N+1);
for i = 1:N+1
    % dimensions
    stages(i).dims.n = 10;
stages(i).dims.r = 5;
stages(i).dims.lb = 3;
    % cost
    stages(i).cost.H = Hi;
stages(i).cost.f = fi;
    % inequalities
    stages(i).ineq.b.lbidx = 3:5;
stages(i).ineq.b.lb = zeros(3,1);
    % equalities
    stages(i).eq.C = Ci;
stages(i).eq.c = ci;
stages(i).eq.D = Di;
end
generateCode(stages);
```

FORCES

- C code generation of primal-dual Mehrotra interior point solvers
- LPs, QPs, QCQPs
- Parametric problems
- Multi-core platforms
- Library-free
- Available: forces.ethz.ch

Generated Code

Solver (ANSI-C)

```
solver.h
solver.c
solver.m
solvermex.c
makemex
```

MATLAB MEX interface for rapid prototyping

Available: forces.ethz.ch
Speedups Compared to IBM CPLEX

- Standard MPC problem for oscillating chain of masses (on Intel i5 @3.1 GHz)
- CPLEX N/A on embedded systems

<table>
<thead>
<tr>
<th>Solver</th>
<th>Solve time (μs)</th>
<th>Code size (KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORCES</td>
<td>90</td>
<td>52</td>
</tr>
<tr>
<td>CPLEX</td>
<td>5470</td>
<td>11700</td>
</tr>
</tbody>
</table>

Graph showing speedup vs. number of states.

- Speedup of 80x, 10x, and 2x for different solvers and configurations.
Simple B&B Strategy with FORCES

- Generate a solver for QCQP with parametric lower- and upper bounds:

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{N} \frac{1}{2} v_i^T H_i v_i + f_i^T v_i \\
\text{subject to} & \quad v_i \leq v_i \leq \bar{v}_i \\
& \quad A_i v_i \leq b_i \\
& \quad v_i^T Q_{i,j} v_i + l_{i,j}^T v_i \leq r_{i,j} \\
& \quad C_i v_i + D_{i+1} v_{i+1} = c_i
\end{align*}
\]

- Relaxation: \(0 \leq v_i \leq 1 \) for binary variables
- Set \(v_{i,j} = \bar{v}_{i,j} \) to 0 or 1 to fix variable \(j \) in stage \(i \)

→ Low-footprint MI-QCQP solver for hybrid MPC
Outline

1. MLD models & hybrid MPC
2. Solution of mixed-integer programs via branch-and-bound
 • Standard branch & bound
 • Multistage problems & FORCES
3. Complexity reduction for embedded solvers
 • Rounding & branching strategy
 • Relaxations of optimality & feasibility
 • Pre-computations on binary constraints
4. Summary
Branch-and-bound: Branching Strategy

- Branch-and-bound tree is explored **depth-first**
 - Likely to find feasible solutions early
 - Low memory complexity (linear in #binaries)

- Use **stage-in-order** heuristic (fix in order $i = 1, 2, \ldots, N$)
 - Motivated by receding horizon policy – fix early stages first

- In current stage, branch on **most ambiguous** relaxed variable, i.e. the one closest to 0.5 [Boyd & Mattingley, EE364b notes]
Branch-and-bound: Rounding Schemes

- Nearest-neighbor: computationally efficient, solution can be infeasible

- Combinatorial Integral Approximation [Sager et al. 2014]

\[
\tilde{\delta} \triangleq \arg \min_{\delta \in \Omega} \max_{k=0,\ldots,N} \max_{j} \left| \sum_{l=0}^{k} (\delta_{l,j}^* - \delta_{l,j}) \right|
\]

- Need to solve MILP, but theoretical guarantees on approx. quality

- Sum-up-rounding: explicit solution of CIA if \(\Omega \equiv \{0, 1\}^n \) [Sager et al. 2012]

\[
\tilde{\delta}_{k,j} \triangleq \begin{cases}
1 & \text{if } \sum_{l=0}^{k} \delta_{l,j}^* - \sum_{l=0}^{k-1} \tilde{\delta}_{l,j} \geq 0.5 \\
0 & \text{otherwise}
\end{cases}
\]
Outline

1. MLD models & hybrid MPC
2. Solution of mixed-integer programs via branch-and-bound
 • Standard branch & bound
 • Multistage problems & FORCES
3. Complexity reduction for embedded solvers
 • Rounding & branching strategy
 • Relaxations of optimality & feasibility
 • Pre-computations on binary constraints
4. Summary
Relaxations

- Only first control action is applied in a receding horizon scheme
 - Can relax later stages to improve solve time

- Relax *integrality* or *optimality* after \(M < N \) stages

Trade-off computation time for performance
Relaxation of Optimality

- Relax optimality after M stages, preserve feasibility for all N stages
 - Often N-step feasible, M-step optimal solutions of sufficient quality for closed-loop control
 - Reduces complexity if feasible solutions can be found quickly

- Solution is feasible for original problem, but likely to be suboptimal
Relaxation of Integer Feasibility

- Relax integer feasibility after M stages
 - Maintain benefits of long horizons for continuous dynamics
 - First control move likely to provide good performance

- Effective reduction of #binaries
Numerical Results: Fuel Cell Control

- Hybrid MPC problem with 60 binary and 242 continuous variables
- Sampling time of 1s met with 1% performance deterioration
- Max. 208 QPs solved

On MacBook Pro 2.6 GHz

Maximum solution time [s]

Relaxed integrality (N=60)
Relaxed optimality (N=60)

* Performance deterioration compared to optimal closed-loop cost (N=60)

On MacBook Pro 2.6 GHz
Speedups Compared to IBM CPLEX

- Speedup of median compute time w.r.t. CPLEX solving full problem:

 ![Graph showing speedup of median compute time with respect to IBM CPLEX solving full problem.](image)

 - Relaxation of integer feasibility
 - Relaxation of optimality

- In all cases with $M > 5$: performance deterioration less than 2%
Numerical Results: Optimal Traffic Control

- Horizon length $N=5$: 25 binary variables, 105 continuous variables
- Number of QPs applying standard approach without relaxations:
 - Solution time ~ 20 seconds \rightarrow too slow
 - $\sim 96\%$ of time for “solving” infeasible sub-problems
Outline

1. MLD models & hybrid MPC
2. Solution of mixed-integer programs via branch-and-bound
 - Standard branch & bound
 - Multistage problems & FORCES
3. Complexity reduction for embedded solvers
 - Rounding & branching strategy
 - Relaxations of optimality & feasibility
 - Pre-computations on binary constraints
4. Summary
Pre-processing: Infeasibility/Sub-optimality Pruning

- **Main idea:** exploit structure of constraints & cost on binaries to prune sub-trees without solving convex sub-problem
- **Infeasibility** pruning
- **Sub-optimality** pruning

Goal: Pre-compute at codegen for efficient pruning at run time
Pre-processing: Extended Constraint Functions

Consider a constraint depending only on binaries:

\[g(\delta) \leq 0, \quad \delta \in \{0, 1\}^{n_b} \]

Each B&B node can be represented by a set \(\mathcal{I} \subseteq 2^{\{0,1\}^{n_b}} \) of possible binaries.

Goal: detect infeasibility of \(g(\delta) \) for all \(\delta \in \mathcal{I} \) efficiently

\[g_e(\mathcal{I}) \triangleq \min_{\delta} g(\delta) \]

s.t. \(\delta \in \mathcal{I} \)

with property: \(g_e(\mathcal{I}) > 0 \Rightarrow g(\delta) > 0 \quad \forall \delta \in \mathcal{I} \)

(sufficient condition for infeasibility)
Pre-processing: Extended Constraint Functions

\[g_e(\mathcal{I}) \triangleq \min_\delta g(\delta) \]

s.t. \(\delta \in \mathcal{I} \)

- ECF is a parametric integer program
- Cheap to evaluate \(g_e(\cdot) \) for
 - Constraint on #switchings (fuel cell, power electronics)
 - Exclusive logical constraints (traffic control, multilevel inverter)
 - Lookup table, decision tree (for small number of variables)
Infeasibility Pruning via ECFs

- Code for evaluating $g_e(\cdot)$ is generated at codegen time
- Evaluating $g_e(\cdot)$ is often more efficient than solving QP
- At each B&B node, evaluate $g_e(\mathcal{I})$ to test for infeasibility

Example: constraint on #switchings (fuel cell)

$$g_e(\mathcal{I}) \triangleq \min_{\delta \in \mathcal{I}} \sum_{j=k-N_s+1}^{k} \delta_j - n_{\text{switch}}$$

- Trivial evaluation: set relaxed binaries to zero & count fixed 1's

Use $g_e(\cdot)$ to prune infeasible sub-trees
Sub-optimality Pruning via ECFs

- **Key assumption 1:** optimization problem has the form

 \[
 \begin{align*}
 \min_{z, \delta} f(z, \delta) \\
 \text{s.t. } (z, \delta) \in C \subseteq R^{nc} \times \{0, 1\}^{nb} \\
 I_G^T \delta \leq 1
 \end{align*}
 \]

 where \(I_G \) is the incidence matrix of the undirected graph \(G \triangleq (V, E) \) modeling the dependency of binaries

- Models logical constraints that are exclusive
 Example traffic control: only certain combinations of signals on green

- Consequence: every feasible \(\delta \) is an independent set
 (i.e. nodes are not connected by edges)
Sub-optimality Pruning via ECFs

- **Key assumption 2**: cost does not increase when setting a 0 to 1, i.e.

\[
\forall \delta, \hat{\delta} \in \{0, 1\}^{nb} : \|\delta\|_1 > \|\hat{\delta}\|_1 \Rightarrow h(\delta) \leq h(\hat{\delta})
\]

where \(h(\delta) \triangleq \begin{cases}
\min_z \{ f(z, \delta) : (z, \delta) \in \mathcal{C}, I^T_G \delta \leq 1 \} & \text{if feasible} \\
+\infty & \text{otherwise}
\end{cases} \)

Example traffic control: set as many signals to green as feasible

- Consequence: every optimal \(\delta \) is a maximum independent set (i.e. no node can be added such that all nodes are not connected)

- Set of maximum independent sets can be pre-computed

Use \(g_e(\cdot) \) to prune non-maximum (suboptimal) independent sets
Numerical Results: Optimal Traffic Control

- For horizon length of 5: 25 binary variables, 105 continuous variables

Infeasibility & sub-optimality pruning drastically reduces #QPs
Median computation times compared to CPLEX:

- 30x slower for N=10 (full problem)
- 3x slower for M=5 (2.3% performance loss)

Approaching speed of desktop solvers with embeddable code
Summary

- Many control problems need solution of MIPs on embedded systems
- First approach toward embedded solver for hybrid MPC:
 - Standard branch-and-bound + tailored, generated interior-point solver
 - Stage-in-order + most-ambiguous branching, nearest-neighbor rounding
 - Code size few tens of KB
- Pre-processing: detect infeasible/suboptimal nodes w/o solving QPs
 - Extended constraint functions can be generated at codegen time
 - Often much faster to evaluate than convex sub-problem

→ Simple embeddable solver approaching desktop performance

- Future work:
 - First-order sub-problem solvers (ADMM, gradient projection, …)
 - Generate more tree-pruning cuts at code generation time