
Embedded Optimization for ���
Mixed Logic Dynamical Systems	


Alexander Domahidi ���
Joint work with Damian Frick and Manfred Morari	


EMBOPT Workshop���
IMT Lucca, Italy	

September 8, 2014	




Application: Optimal Traffic Control	


▶  Discrete signaling with switching cost	

▶  Logical constraints on signaling	

▶  Control objective: minimize queue size	


Medium-to-large-scale hybrid MPC problem	


Source: sunshinekelly.com	
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Application: Fuel Cell Power Management	


▶  Fuel cell power varied continuously, but discontinuity in losses	

▶  Super-capacitor balances power	

 
Control objectives: 
▶  Meet (predicted) load profile	

▶  Minimize losses (piecewise quadratic cost)	

▶  Limit number of switchings to two per minute	
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Simulation profile for horizon 5s – losses: 31.5 kJ	
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Application: Fuel Cell Power Management	


Fuel cell power	




Losses reduced by 10% by long control horizon	
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Simulation profile for horizon 60s – losses: 28.9 kJ	


Application: Fuel Cell Power Management	




Application: Multi-Level Inverters for Drives	

▶  High efficiency and power quality	

	

9-level induction motor drive:	


•  6 capacitor voltages	

•  3 motor currents	

•  15 independent switches ���

operated at frequency > 1kHz	

	


	
	


▶  Control objective: track current reference	

▶  MPC dramatically improves losses, distortion and transient behavior 

[Geyer et al., 2011]	
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Needs ultra-fast solver to compute switch positions in real-time	




Embedded Solvers for Hybrid MPC	

▶  Main idea: use fast convex sub-problem solvers + branch-and-bound	

▶  On FPGA, 1 MHz per sub-problem possible [Jerez et al., 2013]	


à 1000 convex problems per millisecond – powerful decision making!	


▶  In this talk:  
•  Fast code-generated interior point solvers to cover general problems 	

•  Problem relaxations: exploit receding horizon + feedback in MPC	

•  Pre-processing: detect infeasibility or sub-optimality without solving 

convex sub-problem	


	


Goal: solver for hybrid MPC on embedded platforms	
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Outline	

1.  MLD models & hybrid MPC	

2.  Solution of mixed-integer programs via branch-and-bound	


•  Standard branch & bound	

•  Multistage problems & FORCES	


3.  Complexity reduction for embedded solvers	

•  Rounding & branching strategy	

•  Relaxations of optimality & feasibility	

•  Pre-computations on binary constraints	


4.  Summary	
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Hybrid Systems	


A	
B	

C	

C	

A	

B	

B	

C	

x(k + 1) = f (x(k), u(k))

y(k) = g(x(k), u(k))

X = {1, 2, 3, 4, 5}
U = {A,B, C}

system	

y(t)u(t)

x � Rn

u � Rm

y � Rp

10	




Hybrid Systems with Affine Dynamics	

▶  Descriptive enough to capture system behavior	


•  continuous dynamics (physical laws)	

•  logic components (switches, automata)	

•  interconnection between logic and dynamics	


▶  Simple enough for analysis and synthesis	

•  controllability, observability, reachability	

•  controller / filter design	

•  stability & constraint satisfaction	
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Mixed Logic Dynamical (MLD) Models	

▶  Discrete time linear dynamics and logic can be combined into ���

Mixed Logic Dynamical (MLD) form [Bemporad & Morari, 1999]	


▶  Mature modeling tools exists, e.g. HYSDEL [Torrisi & Bemporad, 2004]	

▶  Equivalent to PWA, linear complementarity, max-min-plus-scaling	

▶  Analysis and synthesis problems can be solved via mixed-integer 

(linear) programs. [Heemels, De Schutter, Bemporad, 2001]	
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x � Rnc � {0, 1}nb

u � Rmc � {0, 1}mb

y � Rpc � {0, 1}pb

w � Rqc � {0, 1}qb

xk+1 = Axk + Buuk + Bwwk + Baf f

yk = Cxk +Duuk +Dwwk +Daf f

Exxk + Euuk + Ewwk � Eaf f



Hybrid MPC Problems with MLD Dynamics	


▶  Optimization problem is mixed-integer QP (NP-hard)	

▶  Desktop software often solves medium-scale problems efficiently	


x � Rnc � {0, 1}nb

u � Rmc � {0, 1}mb

w � Rqc � {0, 1}qb

Embedded solvers exist only for small-scale problems (explicit)	
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min
x,u,w

N�1�

k=0

xTk Qx
T
k + uTk Ruk + xTNPxN

W�X� x0 = x

xk+1 = Axk + Buuk + Bwwk + Baf f

Exxk + Euuk + Ewwk � Eaf f

xk � Xk , xN � Xf , uk � Uk
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Standard branch-and-bound	


enumerate	
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▶  Find optimal solution to MIQP without enumerating all possibilities	


 cost	
minimizer	




Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	


QPs	


optimal	
 feasible	




Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	


relaxations (QPs)	




Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	
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Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	
 	
 	
lower bound:	




Standard branch-and-bound	


20	


▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	


feasible	

rounding:	


upper bound:	




Standard branch-and-bound	
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Standard branch-and-bound	


23	


▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	


infeasible	




Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	


prune	


infeasible	
infeasible	




Standard branch-and-bound	
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Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	


Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	

▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	


	

▶  B&B code size: ~100 lines of C code	


Standard branch-and-bound	
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Key ingredient: fast, simple low-level (QC)QP solver	




Multi-stage Convex QCQPs	


▶  Structure allows for significant speedups	

▶  Hybrid MPC sub-problems fit this problem structure	
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TPUPTPaL
�N

i=1
1
2v

T
i Hivi + f T

i vi

Z\IQLJ[ [V v i � vi � v̄i

Aivi � bi

vT
i Qi ,jvi + lTi,jvi � ri ,j

Civi +Di+1vi+1 = ci

separable objective	


upper/lower bounds	


affine inequalities	


quadratic constraints	


inter-stage equalities	


Idea: use code-generated convex solver for B&B sub-problems	




FORCES Exploits the Multistage Structure	


▶  Main computation in interior point methods: solve linear system	


1. Compute Y (~80% of cost), 2. factor               (~20%), 3. fwd./bkwd. solve	


▶  Exploit block-wise structure in KKT system	
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Multistage QCQP Search Direction Computation Pos. Def. System

New Method for Computing Y ✓  Saves        flops"
w.r.t. literature

✓  Cache efficient
✓  Numerically robust
✓  Parallelizable
✓  Enables further 

structure exploitation

Coefficient Matrix Y

r: block size

Y = LLT

2r3



Fine-Grained Structure Exploitation	


▶  Additional structure exploitation possible for special cases:	


▶  Example for typical MPC problem:	

•  Stages 0...N-1: Q, R diagonal	

•  Stage N: P dense	

à ~75% complexity reduction 
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Objective	


9.3x 9.3x 1.4x

1.0x 1.0x 1.0x

6.7x 6.7x 1.4x

1.4x 1.4x 1.4x (1.8x if M=Q)

Co
ns

tra
int

s	


Theoretical speedups���
compared to base case	


[Domahidi et al., CDC 2012]	


Structure exploitation can be automatized by code generation	




The FORCES Code Generator	

Multistage QCQP

?

Embedded Hardware

▶  C code generation of primal-
dual Mehrotra interior point 
solvers	


▶  LPs, QPs, QCQPs	

▶  Parametric problems	

▶  Multi-core platforms	

▶  Library-free	

▶  Available: forces.ethz.ch	


Problem description
stage = MultiStageProblem(N+1); 
for i = 1:N+1 
% dimensions 
stages(i).dims.n = 10;  
stages(i).dims.r = 5;   
stages(i).dims.lb = 3;  
 
% cost 
stages(i).cost.H = Hi; 
stages(i).cost.f = fi; 
 
% inequalities 
stages(i).ineq.b.lbidx = 3:5; 
stages(i).ineq.b.lb = zeros(3,1); 
 
% equalities 
stages(i).eq.C = Ci; 
stages(i).eq.c = ci; 
stages(i).eq.D = Di; 
end 
generateCode(stages); 

Solver (ANSI-C)

MATLAB MEX interface"
for rapid prototyping

solver.h 
solver.c 
solver.m 
solvermex.c 
makemex 

Generated Code
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Speedups Compared to IBM CPLEX	


▶  Standard MPC problem for oscillating���
chain of masses (on Intel i5 @3.1 GHz)	


▶  CPLEX N/A on embedded systems	


CPLEX
Solve time: 5470 μs 
Code size: 11700 KB

FORCES
Solve time: 90 μs 
Code size: 52 KB

80x!

10x!
2x!

33	




Simple B&B Strategy with FORCES	

▶  Generate a solver for QCQP with parametric lower- and upper 

bounds:	


▶  Relaxation:                   for binary variables	

▶  Set                to 0 or 1 to fix variable j in stage i	
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0 � vi � 1

v i ,j = v̄i ,j

à Low-footprint MI-QCQP solver for hybrid MPC	


TPUPTPaL
�N

i=1
1
2v

T
i Hivi + f T

i vi

Z\IQLJ[ [V v i � vi � v̄i

Aivi � bi

vT
i Qi ,jvi + lTi,jvi � ri ,j

Civi +Di+1vi+1 = ci

Change in each 
B&B sub-problem	




Outline	
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Branch-and-bound: Branching Strategy	

▶  Branch-and-bound tree is explored depth-first	


•  Likely to find feasible solutions early	

•  Low memory complexity (linear in #binaries)	


▶  Use stage-in-order heuristic (fix in order                  )	

•  Motivated by receding horizon policy – fix early stages first	


▶  In current stage, branch on most ambiguous relaxed variable, ���
i.e. the one closest to 0.5 [Boyd & Mattingley, EE364b notes]	
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i = 1, 2, . . . , N



Branch-and-bound: Rounding Schemes	

▶  Nearest-neighbor: computationally efficient, solution can be infeasible	


▶  Combinatorial Integral Approximation [Sager et al. 2014]	


•  Need to solve MILP, but theoretical guarantees on approx. quality	


▶  Sum-up-rounding: explicit solution of CIA if                 [Sager et al. 2012]	
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�̃ � argmin
���

max
k=0,...,N

max
j

�����

k�

l=0

�
��l ,j � �l ,j

�
�����

�̃k,j �
�
1 PM

�k
l=0 �

�
l ,j �

�k�1
l=0 �̃l ,j � 0.5

0 V[OLY^PZL

� � {0, 1}n
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Relaxations	


▶  Only first control action is applied in a receding horizon scheme	

à Can relax later stages to improve solve time	


▶  Relax integrality or optimality after M < N stages	
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Trade-off computation time for performance 	




Relaxation of Optimality	

	

	

	


▶  Relax optimality after M stages, preserve feasibility for all N stages	

•  Often N-step feasible, M-step optimal solutions of sufficient quality for 

closed-loop control	

•  Reduces complexity if feasible solutions can be found quickly	


▶  Solution is feasible for original problem, but likely to be suboptimal	
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Relaxation of Integer Feasibility	

	

	

	


▶  Relax integer feasibility after M stages	

•  Maintain benefits of long horizons for continuous dynamics	

•  First control move likely to provide good performance	


▶  Effective reduction of #binaries	
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On MacBook Pro 2.6 GHz	


▶  Hybrid MPC problem with 60 binary and 242 continuous variables	


▶  Sampling time of 1s met with 1% performance deterioration	

▶  Max. 208 QPs solved	


Numerical Results: Fuel Cell Control	


Maximum solution 
time [s]	


Performance deterioration compared���
to optimal closed-loop cost (N=60)	




Speedups Compared to IBM CPLEX	
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227x	  

50x	  
25x	   16x	   10x	  
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▶  Speedup of median compute time w.r.t. CPLEX solving full problem:	


	


▶  In all cases with M>5: performance deterioration less than 2%	
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Relaxation of integer feasibility	
 Relaxation of optimality	


“optimality horizon” length M	




Numerical Results: Optimal Traffic Control	

▶  Horizon length N=5: 25 binary variables, 105 continuous variables	

▶  Number of QPs applying standard approach without relaxations:	


▶  Solution time ~20 seconds à too slow	

▶  ~96% of time for “solving” infeasible sub-problems	
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Pre-processing: Infeasibility/Sub-optimality Pruning	


▶  Main idea: exploit structure of constraints & cost on binaries to 
prune sub-trees without solving convex sub-problem	


▶  Infeasibility pruning	

▶  Sub-optimality pruning	
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Goal: Pre-compute at codegen for efficient pruning at run time	




Pre-processing: Extended Constraint Functions	

▶  Consider a constraint depending only on binaries:	


	


▶  Each B&B node can be represented by a set        ���
of possible binaries	


▶  Goal: detect infeasibility of         for all           efficiently  	

à Extended constraint function (ECF):���
���
���
���
���
with property:                                                 ���
(sufficient condition for infeasibility)	
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ge(I) � min
�

g(�)

Z�[� � � I

ge(I) > 0� g(�) > 0 �� � I

I � 2{0,1}
nb

g(�) � 0, � � {0, 1}nb

g(�) � � I



Pre-processing: Extended Constraint Functions	


▶  ECF is a parametric integer program	

▶  Cheap to evaluate         for	


•  Constraint on #switchings (fuel cell, power electronics)	

•  Exclusive logical constraints (traffic control, multilevel inverter)	

•  Lookup table, decision tree (for small number of variables)	
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ge(I) � min
�

g(�)

Z�[� � � I

ge(·)



Infeasibility Pruning via ECFs	

▶  Code for evaluating          is generated at codegen time	

▶  Evaluating          is often more efficient than solving QP	

▶  At each B&B node, evaluate           to test for infeasibility	


▶  Example: constraint on #switchings (fuel cell)	


•  Trivial evaluation: set relaxed binaries to zero & count fixed 1‘s	
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ge(I)

ge (I) � min
��I

k�

j=k�Ns+1

�j � nswitch

# of past switchings 	

window length (for past)	


ge(·)
ge(·)

Use         to prune infeasible sub-trees	


ge(·)

ge(·)



Sub-optimality Pruning via ECFs	

▶  Key assumption 1:  optimization problem has the form	


where      is the incidence matrix of the undirected graph ���
modeling the dependency of binaries	


▶  Models logical constraints that are exclusive���
Example traffic control: only certain combinations of signals on green	


▶  Consequence: every feasible    is an independent set ���
(i.e. nodes are not connected by edges)	


min
z,�

f (z, �)

Z�[� (z, �) � C � Rnc � {0, 1}nb

ITG � � 1

IG G � (V, E)

�
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Sub-optimality Pruning via ECFs	

▶  Key assumption 2: cost does not increase when setting a 0 to 1, i.e. ���
���
for all feasible                     :���
���
where���
���
���
Example traffic control: set as many signals to green as feasible	


▶  Consequence: every optimal    is a maximum independent set���
(i.e. no node can be added such that all nodes are not connected)	


▶  Set of maximum independent sets can be pre-computed	

	


�

�, �̂ � {0, 1}nb ���1 > ��̂�1 � h(�) � h(�̂)

h (�) �
�
minz

�
f (z, �) : (z, �) � C, ITG � � 1

�
PM MLHZPISL

+� V[OLY^PZL

Use         to prune non-maximum (suboptimal) independent sets	


ge(·)

ge(·)
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Numerical Results: Optimal Traffic Control	

▶  For horizon length of 5: 25 binary variables, 105 continuous variables	
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~30x fewer QPs 

Infeasibility & sub-optimality pruning drastically reduces #QPs	




Numerical Results: Traffic Control	
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(no	  relaxa;ons)	  

	


▶  Median computation times compared to CPLEX: 	

•  30x slower for N=10 (full problem)	

•  3x slower for M=5 (2.3% performance loss)	


Approaching speed of desktop solvers with embeddable code	


Maximum solution 
time [s]	


*: Performance deterioration 
compared to optimal closed-
loop cost (N=10)	


*2.3%	


*12.2%	




Summary	

▶  Many control problems need solution of MIPs on embedded systems	

▶  First approach toward embedded solver for hybrid MPC:	


•  Standard branch-and-bound + tailored, generated interior-point solver	

•  Stage-in-order + most-ambiguous branching, nearest-neighbor rounding	

•  Code size few tens of KB	


▶  Pre-processing: detect infeasible/suboptimal nodes w/o solving QPs	

•  Extended constraint functions can be generated at codegen time	

•  Often much faster to evaluate than convex sub-problem	


▶  Future work:	

•  First-order sub-problem solvers (ADMM, gradient projection, …)	

•  Generate more tree-pruning cuts at code generation time	
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à Simple embeddable solver approaching desktop performance	



