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Application: Optimal Traffic Control	



▶  Discrete signaling with switching cost	


▶  Logical constraints on signaling	


▶  Control objective: minimize queue size	



Medium-to-large-scale hybrid MPC problem	



Source: sunshinekelly.com	
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Application: Fuel Cell Power Management	



▶  Fuel cell power varied continuously, but discontinuity in losses	


▶  Super-capacitor balances power	


 
Control objectives: 
▶  Meet (predicted) load profile	


▶  Minimize losses (piecewise quadratic cost)	


▶  Limit number of switchings to two per minute	
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Simulation profile for horizon 5s – losses: 31.5 kJ	



4	



Application: Fuel Cell Power Management	



Fuel cell power	





Losses reduced by 10% by long control horizon	
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Simulation profile for horizon 60s – losses: 28.9 kJ	



Application: Fuel Cell Power Management	





Application: Multi-Level Inverters for Drives	


▶  High efficiency and power quality	


	


9-level induction motor drive:	



•  6 capacitor voltages	


•  3 motor currents	


•  15 independent switches ���

operated at frequency > 1kHz	


	



	

	



▶  Control objective: track current reference	


▶  MPC dramatically improves losses, distortion and transient behavior 

[Geyer et al., 2011]	
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Needs ultra-fast solver to compute switch positions in real-time	





Embedded Solvers for Hybrid MPC	


▶  Main idea: use fast convex sub-problem solvers + branch-and-bound	


▶  On FPGA, 1 MHz per sub-problem possible [Jerez et al., 2013]	



à 1000 convex problems per millisecond – powerful decision making!	



▶  In this talk:  
•  Fast code-generated interior point solvers to cover general problems 	


•  Problem relaxations: exploit receding horizon + feedback in MPC	


•  Pre-processing: detect infeasibility or sub-optimality without solving 

convex sub-problem	



	



Goal: solver for hybrid MPC on embedded platforms	
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Outline	


1.  MLD models & hybrid MPC	


2.  Solution of mixed-integer programs via branch-and-bound	



•  Standard branch & bound	


•  Multistage problems & FORCES	



3.  Complexity reduction for embedded solvers	


•  Rounding & branching strategy	


•  Relaxations of optimality & feasibility	


•  Pre-computations on binary constraints	



4.  Summary	
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Hybrid Systems	



A	

B	


C	


C	


A	


B	


B	


C	


x(k + 1) = f (x(k), u(k))

y(k) = g(x(k), u(k))

X = {1, 2, 3, 4, 5}
U = {A,B, C}

system	


y(t)u(t)

x � Rn

u � Rm

y � Rp
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Hybrid Systems with Affine Dynamics	


▶  Descriptive enough to capture system behavior	



•  continuous dynamics (physical laws)	


•  logic components (switches, automata)	


•  interconnection between logic and dynamics	



▶  Simple enough for analysis and synthesis	


•  controllability, observability, reachability	


•  controller / filter design	


•  stability & constraint satisfaction	



11	





Mixed Logic Dynamical (MLD) Models	


▶  Discrete time linear dynamics and logic can be combined into ���

Mixed Logic Dynamical (MLD) form [Bemporad & Morari, 1999]	



▶  Mature modeling tools exists, e.g. HYSDEL [Torrisi & Bemporad, 2004]	


▶  Equivalent to PWA, linear complementarity, max-min-plus-scaling	


▶  Analysis and synthesis problems can be solved via mixed-integer 

(linear) programs. [Heemels, De Schutter, Bemporad, 2001]	
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x � Rnc � {0, 1}nb

u � Rmc � {0, 1}mb

y � Rpc � {0, 1}pb

w � Rqc � {0, 1}qb

xk+1 = Axk + Buuk + Bwwk + Baf f

yk = Cxk +Duuk +Dwwk +Daf f

Exxk + Euuk + Ewwk � Eaf f



Hybrid MPC Problems with MLD Dynamics	



▶  Optimization problem is mixed-integer QP (NP-hard)	


▶  Desktop software often solves medium-scale problems efficiently	



x � Rnc � {0, 1}nb

u � Rmc � {0, 1}mb

w � Rqc � {0, 1}qb

Embedded solvers exist only for small-scale problems (explicit)	
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min
x,u,w

N�1�

k=0

xTk Qx
T
k + uTk Ruk + xTNPxN

W�X� x0 = x

xk+1 = Axk + Buuk + Bwwk + Baf f

Exxk + Euuk + Ewwk � Eaf f

xk � Xk , xN � Xf , uk � Uk



Outline	


1.  MLD models & hybrid MPC	


2.  Solution of mixed-integer programs via branch-and-bound	



•  Standard branch & bound	


•  Multistage problems & FORCES	



3.  Complexity reduction for embedded solvers	


•  Rounding & branching strategy	


•  Relaxations of optimality & feasibility	


•  Pre-computations on binary constraints	



4.  Summary	
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Standard branch-and-bound	



enumerate	
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▶  Find optimal solution to MIQP without enumerating all possibilities	



 cost	

minimizer	





Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	



QPs	



optimal	

 feasible	





Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	


▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	



relaxations (QPs)	





Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	


▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	





Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	


▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	

 	

 	

lower bound:	





Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	


▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	



feasible	


rounding:	



upper bound:	





Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	
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integer-feasible solutions	





Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	


▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	



branch	





Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	


▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	



infeasible	





Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	


▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	



prune	



infeasible	

infeasible	





Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	


▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	





Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	


▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	



branch	





▶  Find optimal solution to MIQP without enumerating all possibilities	


▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	



Standard branch-and-bound	
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▶  Find optimal solution to MIQP without enumerating all possibilities	


▶  Exploit bounds on optimal cost obtained from relaxations and 

integer-feasible solutions	



	


▶  B&B code size: ~100 lines of C code	



Standard branch-and-bound	
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Key ingredient: fast, simple low-level (QC)QP solver	





Multi-stage Convex QCQPs	



▶  Structure allows for significant speedups	


▶  Hybrid MPC sub-problems fit this problem structure	
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TPUPTPaL
�N

i=1
1
2v

T
i Hivi + f T

i vi

Z\IQLJ[ [V v i � vi � v̄i

Aivi � bi

vT
i Qi ,jvi + lTi,jvi � ri ,j

Civi +Di+1vi+1 = ci

separable objective	



upper/lower bounds	



affine inequalities	



quadratic constraints	



inter-stage equalities	



Idea: use code-generated convex solver for B&B sub-problems	





FORCES Exploits the Multistage Structure	



▶  Main computation in interior point methods: solve linear system	



1. Compute Y (~80% of cost), 2. factor               (~20%), 3. fwd./bkwd. solve	



▶  Exploit block-wise structure in KKT system	
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Multistage QCQP
 Search Direction Computation
 Pos. Def. System


New Method for Computing Y
 ✓  Saves        flops"
w.r.t. literature


✓  Cache efficient

✓  Numerically robust

✓  Parallelizable

✓  Enables further 

structure exploitation


Coefficient Matrix Y


r: block size


Y = LLT

2r3



Fine-Grained Structure Exploitation	



▶  Additional structure exploitation possible for special cases:	



▶  Example for typical MPC problem:	


•  Stages 0...N-1: Q, R diagonal	


•  Stage N: P dense	


à ~75% complexity reduction 
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Objective	



9.3x
 9.3x
 1.4x


1.0x
 1.0x
 1.0x


6.7x
 6.7x
 1.4x


1.4x
 1.4x
 1.4x (1.8x if M=Q)


Co
ns

tra
int

s	



Theoretical speedups���
compared to base case	



[Domahidi et al., CDC 2012]	



Structure exploitation can be automatized by code generation	





The FORCES Code Generator	


Multistage QCQP


?


Embedded Hardware


▶  C code generation of primal-
dual Mehrotra interior point 
solvers	



▶  LPs, QPs, QCQPs	


▶  Parametric problems	


▶  Multi-core platforms	


▶  Library-free	


▶  Available: forces.ethz.ch	



Problem description

stage = MultiStageProblem(N+1); 
for i = 1:N+1 
% dimensions 
stages(i).dims.n = 10;  
stages(i).dims.r = 5;   
stages(i).dims.lb = 3;  
 
% cost 
stages(i).cost.H = Hi; 
stages(i).cost.f = fi; 
 
% inequalities 
stages(i).ineq.b.lbidx = 3:5; 
stages(i).ineq.b.lb = zeros(3,1); 
 
% equalities 
stages(i).eq.C = Ci; 
stages(i).eq.c = ci; 
stages(i).eq.D = Di; 
end 
generateCode(stages); 

Solver (ANSI-C)


MATLAB MEX interface"
for rapid prototyping


solver.h 
solver.c 
solver.m 
solvermex.c 
makemex 

Generated Code
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Speedups Compared to IBM CPLEX	



▶  Standard MPC problem for oscillating���
chain of masses (on Intel i5 @3.1 GHz)	



▶  CPLEX N/A on embedded systems	



CPLEX

Solve time: 5470 μs 
Code size: 11700 KB


FORCES

Solve time: 90 μs 
Code size: 52 KB


80x!

10x!
2x!
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Simple B&B Strategy with FORCES	


▶  Generate a solver for QCQP with parametric lower- and upper 

bounds:	



▶  Relaxation:                   for binary variables	


▶  Set                to 0 or 1 to fix variable j in stage i	
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0 � vi � 1

v i ,j = v̄i ,j

à Low-footprint MI-QCQP solver for hybrid MPC	



TPUPTPaL
�N

i=1
1
2v

T
i Hivi + f T

i vi

Z\IQLJ[ [V v i � vi � v̄i

Aivi � bi

vT
i Qi ,jvi + lTi,jvi � ri ,j

Civi +Di+1vi+1 = ci

Change in each 
B&B sub-problem	





Outline	


1.  MLD models & hybrid MPC	


2.  Solution of mixed-integer programs via branch-and-bound	



•  Standard branch & bound	


•  Multistage problems & FORCES	



3.  Complexity reduction for embedded solvers	


•  Rounding & branching strategy	


•  Relaxations of optimality & feasibility	


•  Pre-computations on binary constraints	



4.  Summary	
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Branch-and-bound: Branching Strategy	


▶  Branch-and-bound tree is explored depth-first	



•  Likely to find feasible solutions early	


•  Low memory complexity (linear in #binaries)	



▶  Use stage-in-order heuristic (fix in order                  )	


•  Motivated by receding horizon policy – fix early stages first	



▶  In current stage, branch on most ambiguous relaxed variable, ���
i.e. the one closest to 0.5 [Boyd & Mattingley, EE364b notes]	
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i = 1, 2, . . . , N



Branch-and-bound: Rounding Schemes	


▶  Nearest-neighbor: computationally efficient, solution can be infeasible	



▶  Combinatorial Integral Approximation [Sager et al. 2014]	



•  Need to solve MILP, but theoretical guarantees on approx. quality	



▶  Sum-up-rounding: explicit solution of CIA if                 [Sager et al. 2012]	
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�̃ � argmin
���

max
k=0,...,N

max
j

�����

k�

l=0

�
��l ,j � �l ,j

�
�����

�̃k,j �
�
1 PM

�k
l=0 �

�
l ,j �

�k�1
l=0 �̃l ,j � 0.5

0 V[OLY^PZL

� � {0, 1}n



Outline	


1.  MLD models & hybrid MPC	


2.  Solution of mixed-integer programs via branch-and-bound	



•  Standard branch & bound	


•  Multistage problems & FORCES	



3.  Complexity reduction for embedded solvers	


•  Rounding & branching strategy	


•  Relaxations of optimality & feasibility	


•  Pre-computations on binary constraints	



4.  Summary	
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Relaxations	



▶  Only first control action is applied in a receding horizon scheme	


à Can relax later stages to improve solve time	



▶  Relax integrality or optimality after M < N stages	
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Trade-off computation time for performance 	





Relaxation of Optimality	


	


	


	



▶  Relax optimality after M stages, preserve feasibility for all N stages	


•  Often N-step feasible, M-step optimal solutions of sufficient quality for 

closed-loop control	


•  Reduces complexity if feasible solutions can be found quickly	



▶  Solution is feasible for original problem, but likely to be suboptimal	
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Relaxation of Integer Feasibility	


	


	


	



▶  Relax integer feasibility after M stages	


•  Maintain benefits of long horizons for continuous dynamics	


•  First control move likely to provide good performance	



▶  Effective reduction of #binaries	



41	





42	



On MacBook Pro 2.6 GHz	



▶  Hybrid MPC problem with 60 binary and 242 continuous variables	



▶  Sampling time of 1s met with 1% performance deterioration	


▶  Max. 208 QPs solved	



Numerical Results: Fuel Cell Control	



Maximum solution 
time [s]	



Performance deterioration compared���
to optimal closed-loop cost (N=60)	





Speedups Compared to IBM CPLEX	
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▶  Speedup of median compute time w.r.t. CPLEX solving full problem:	



	



▶  In all cases with M>5: performance deterioration less than 2%	
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Relaxation of integer feasibility	

 Relaxation of optimality	
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Numerical Results: Optimal Traffic Control	


▶  Horizon length N=5: 25 binary variables, 105 continuous variables	


▶  Number of QPs applying standard approach without relaxations:	



▶  Solution time ~20 seconds à too slow	


▶  ~96% of time for “solving” infeasible sub-problems	
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Outline	
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Pre-processing: Infeasibility/Sub-optimality Pruning	



▶  Main idea: exploit structure of constraints & cost on binaries to 
prune sub-trees without solving convex sub-problem	



▶  Infeasibility pruning	


▶  Sub-optimality pruning	
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Goal: Pre-compute at codegen for efficient pruning at run time	





Pre-processing: Extended Constraint Functions	


▶  Consider a constraint depending only on binaries:	



	



▶  Each B&B node can be represented by a set        ���
of possible binaries	



▶  Goal: detect infeasibility of         for all           efficiently  	


à Extended constraint function (ECF):���
���
���
���
���
with property:                                                 ���
(sufficient condition for infeasibility)	
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ge(I) � min
�

g(�)

Z�[� � � I

ge(I) > 0� g(�) > 0 �� � I

I � 2{0,1}
nb

g(�) � 0, � � {0, 1}nb

g(�) � � I



Pre-processing: Extended Constraint Functions	



▶  ECF is a parametric integer program	


▶  Cheap to evaluate         for	



•  Constraint on #switchings (fuel cell, power electronics)	


•  Exclusive logical constraints (traffic control, multilevel inverter)	


•  Lookup table, decision tree (for small number of variables)	
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ge(I) � min
�

g(�)

Z�[� � � I

ge(·)



Infeasibility Pruning via ECFs	


▶  Code for evaluating          is generated at codegen time	


▶  Evaluating          is often more efficient than solving QP	


▶  At each B&B node, evaluate           to test for infeasibility	



▶  Example: constraint on #switchings (fuel cell)	



•  Trivial evaluation: set relaxed binaries to zero & count fixed 1‘s	
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ge(I)

ge (I) � min
��I

k�

j=k�Ns+1

�j � nswitch

# of past switchings 	


window length (for past)	



ge(·)
ge(·)

Use         to prune infeasible sub-trees	



ge(·)

ge(·)



Sub-optimality Pruning via ECFs	


▶  Key assumption 1:  optimization problem has the form	



where      is the incidence matrix of the undirected graph ���
modeling the dependency of binaries	



▶  Models logical constraints that are exclusive���
Example traffic control: only certain combinations of signals on green	



▶  Consequence: every feasible    is an independent set ���
(i.e. nodes are not connected by edges)	



min
z,�

f (z, �)

Z�[� (z, �) � C � Rnc � {0, 1}nb

ITG � � 1

IG G � (V, E)

�
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Sub-optimality Pruning via ECFs	


▶  Key assumption 2: cost does not increase when setting a 0 to 1, i.e. ���
���
for all feasible                     :���
���
where���
���
���
Example traffic control: set as many signals to green as feasible	



▶  Consequence: every optimal    is a maximum independent set���
(i.e. no node can be added such that all nodes are not connected)	



▶  Set of maximum independent sets can be pre-computed	


	



�

�, �̂ � {0, 1}nb ���1 > ��̂�1 � h(�) � h(�̂)

h (�) �
�
minz

�
f (z, �) : (z, �) � C, ITG � � 1

�
PM MLHZPISL

+� V[OLY^PZL

Use         to prune non-maximum (suboptimal) independent sets	



ge(·)

ge(·)
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Numerical Results: Optimal Traffic Control	


▶  For horizon length of 5: 25 binary variables, 105 continuous variables	
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No infeasibility/sub-optimality pruning With infeasibility/sub-optimality pruning	



~30x fewer QPs 

Infeasibility & sub-optimality pruning drastically reduces #QPs	





Numerical Results: Traffic Control	
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(no	
  relaxa;ons)	
  

	



▶  Median computation times compared to CPLEX: 	


•  30x slower for N=10 (full problem)	


•  3x slower for M=5 (2.3% performance loss)	



Approaching speed of desktop solvers with embeddable code	



Maximum solution 
time [s]	



*: Performance deterioration 
compared to optimal closed-
loop cost (N=10)	



*2.3%	



*12.2%	





Summary	


▶  Many control problems need solution of MIPs on embedded systems	


▶  First approach toward embedded solver for hybrid MPC:	



•  Standard branch-and-bound + tailored, generated interior-point solver	


•  Stage-in-order + most-ambiguous branching, nearest-neighbor rounding	


•  Code size few tens of KB	



▶  Pre-processing: detect infeasible/suboptimal nodes w/o solving QPs	


•  Extended constraint functions can be generated at codegen time	


•  Often much faster to evaluate than convex sub-problem	



▶  Future work:	


•  First-order sub-problem solvers (ADMM, gradient projection, …)	


•  Generate more tree-pruning cuts at code generation time	
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à Simple embeddable solver approaching desktop performance	




