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Changes for the Better

Motivations: Large Scale Problems

Several image processing applications may need solution of optimization problems

Pixel labeling:

Radiation therapy:
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Super resolution:

These are large problems (108 pixels/voxels, ...) with structure.
Hardware requires simple code but it is often parallel (GPU, SIMD)
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Changes for the Better

Motivations: Optimization-based Control

Massively produced control algorithms are very basics, and microcontroller have
very limited capabilities
Realistic specs:
166 MHz, FP-capable
96 kB RAM,
2.5MB Data-ROM

PI(D) code versus MPC code (30% of it)

err = r -y ;
eint = eint + err ;

eder = (err — epre) / Ts ;

epre = err ;

u = Kp*err + Ki*eint + Kd*eder;

Code verification and validation is long and expensive.
Simple algorithms are always favored to complex ones.

© MERL 9/9/14 2/41



'\EECTHC MITSUBISHI ELECTRIC RESEARCH LABORATORIES R E—— @

Changes for the Better

Motivations: MPC in Mechatronics

Unsupervised Verifiable code.

Fast systems (10Hz - 1KHz, ...) Fast execution.
Low cost embedded CPU, small RAM, ROM > Simple algorithm.

Need optimization algorithms that use few resources, run fast...
... and are simple to code and verify ...
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Changes for the Better

Algorithm Objectives

Solve large problems

Massive parallelization (image processing)

Simple code (control system)

“Fast” convergence

© MERL 9/9/14 4/41
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Changes for the Better

Outline

> Multiplicative fixpoints for NNQP
> Application to general QP
» Model predictive control

» Case studies
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Changes for the Better

Optimality Conditions for NNQP

Consider the Non-Negative Quadratic Program (NNQP) (H > 0)
1
min J(z)ziz’Hz—kF’z—l—M

z

s.t. z >0,
with Lagrangian: L(z,\) = 22’Hz + F'z — Nz

Under strict complementarity (assuming z>0, possibly infinitesimally)
the optimality conditions are

2oV, L(z,\) =0 [zo(Hz+F—)\) = 0 ]
AoVaL(z,A) =0 Aoz = 0

from variational methods (but also KKT under strict complementarity)

© MERL 9/9/14 6/41
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Changes for the Better

Cost Split and Fixpoint

Split the cost function in two parts in the optimality condition

zoV.L(z,\) = zo(H z4+F')—(H z+F + X)) =0.

Then, the optimal solutions are fixpoints of

H z+ F~
z = o
Htz 4+ F+

Z

For active constraints: [A\; >0 = [z]; =0

For inactive constraints: [\; =0 = [(HYz+FN],=[(H z+F));

We design an algorithm to achieve such fixpoint without the need to estimate A.

“Matrix Splitting Methods”, P. Tseng, SIAM 1991, ..., Springer 2009
"Multiplicative updates for nonnegative quadratic programming”, Sha, et. al., , Neural Computation, 2007

© MERL 9/9/14 7/41
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Changes for the Better

Multiplicative Update Iteration

For any matrix ¢

zo(Hz+F - XN =zo((H 2+ F"+¢2)— (H 2+ F + X+ ¢2)).

Starting from z > 0 we apply the multiplicative update

(H + @)z + P
Z(h+1) = (A + )2+ Fr O Z(h)

where ¢ is a (usually small) constant matrix chosen to guarantee convergence.

Note: does not estimate )\ (no need to...)
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Changes for the Better

Proof of Convergence

If ¢+ diag(FT)diag(z)"t+ H~ >0 for all z > 0,

_ (H_+¢)z(h)+F_ . %
ht1) = (BT ) +FF O = Moz =2

Proof strategy ]
Expand cost function: J(&) = J(2) + (£ — 2)'VJ(2) + 5(5 —2)H(§ - 2)

Define the function : Q(& z) — J(z) + (5 _ Z)’Vj(z) N %(5 B Z)’IC(z)(g B Z)
K(z) = diag ([(H+ + @)z + F+]i>

[2]:

1. VE>0,2>0, G(& 2) > J(€)
2. Z(h+1) = arg mgiﬂ G(&s 2(n))

3. J(z(h+1)) < G(2(h+1): 2(n)) < G (2, 2n)) = J(2(n))

1' — * >I<>0
4. S Z(h) =25, 20 2

© MERL 9/9/14 9/41
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Changes for the Better

Proof: Upper Bounding Function

Step 1.

For some non-negative symmetric matrix ¢ that depends only on H,

G(&, z) for any z > 0 upper bounds J(§), for any £ > 0
Proof g; N Z; ig
K(z) —H = (diag(H"z)diag(z)™* — H") 4 (diag(F")diag(z)™' + H")
_ /L J
Yo Yo
—Ht Knn(z) = diag(FT)diag(z) " + H~

Kpsa(z) = diag(H*z)diag(z) ™!

=~

For any symmetric nonnegative ¢, K,sqi(z) >0

So we can choose ¢ such that Knn(z) >0 D

E.g.. ¢ =diag(H 1)
10/41

© MERL 9/9/14



AEECTRIC MITSUBISHI ELECTRIC RESEARCH LABORATORIES S — @

Changes for the Better

Proof: Minimization of Bounding Function

Step 2.

(HT+¢)z+F+

The value ¢ = W_FO2HE o Hinimizes G(&, z) for any z > 0

Proof

Optimality condition: V:G(&,2) =VJ(z2) +K(2)( —2) =0

2 —K(2)"*VJ(2)

§

= 2-K@e) ' ((HY+¢)z+ FN)+K(=) " ((H +¢)z+F)
= diag(2)diag((H™ + @)z + F) " (H™ +¢)z+ F™).

Also, any z > 0 resultsin § >0

© MERL 9/9/14
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Changes for the Better

Proof: Monotonic Cost Decrease

Step 3.

Given 2y # 2%, i Ji 0 [2]iy [(HT + @)z + FT]i # 0:
J(z(nv1)) < G(2nr1), 2n) < G2y 2n)) = J(2(n))

Proof

We have convexity and strict convexity for i-th variable

0 (HT + @)z + FH);

gz , 2 = [K(z i = > 0
CIETE (Z(h+1)> 2(n)) = [K(2(n))] B

We have [2(h+1))i = largming G(&, z(n))]i # [2(n))i

2l = [z = =[K(z2) VI (2))]i # 0

© MERL 9/9/14 12/41



AEECTR!C MITSUBISHI ELECTRIC RESEARCH LABORATORIES TR — @

Changes for the Better

Proof: Convergence to Optimum

Step 4.

Given z(0) > 0 the sequence generated by the multiplicative update is such that

W, TEm) = e P00 =7

Proof
il = )i = =[K(zn) T VI (z))]i # 0

Ziy = Znary & 20VJ(2) =0 optimality condition for NNQP
z>0 = VJ(z) =0 andbyconvexity VJ(z)=0< z=2z*

Jim {J(zn))}n = J but the only stationary pointis z*
— 00

lim {J(Z(h))}h - j = J*

h— o0

© MERL 9/9/14 13/41



I\EECTRIC MITSUBISHI ELECTRIC RESEARCH LABORATORIES SO A P— @

Changes for the Better

Examples: Cost Sequences

Random NNQP

() = )
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Changes for the Better

Multiplicative Update: Properties

H™ + +F;
lteration update (simple ©):  [zt1)]i = &Iﬁ n z;::; n F+{ [2(n)li

1. Projection: not needed since if z,) >0 then z41) >0 ©

2. Monotonicity: cost sequence is monotonic J(z(n+1)) < J(2n)), Vh € Roy ©

3. Convergence rate: linear convergence can be proved (for H > 0)

4. Complexity order: O(n? - p) versus O(n? -log(p)) for general |.P. methods
p = # precision digits

5. Operation types: sums, multiplications ©, divisions ®
(numerator-denominator: 0-complementary)

6. Parallelizability: easy due to the update ©

(can exploit matrix bandwidth)

The algorithm is called Parallel Quadratic Programming (PQP) because of 6
(and by 1, PQP could be also “Projection-free QP” ).

© MERL 9/9/14 15/41
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Multiplicative Update: Vector Field

The multiplicative update defines a (static) vector field on the feasible domain

vector field
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the denominator acts as a “barrier” that repels from the border of the feasible set
except in a manifold leading to the optimum
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Changes for the Better

Properties: Projection-free

The multiplicative update does not need an (explicit) projection.
Although inexpensive in NNQP projection can deteriorate performance...

1 \I
o8 L2 5 PQP lterations
0.6
0.4r ™
0.2 / 3
0— j::,/f::::j/ —aa-a~ :i, S— . .
o, Constraint| S— — . == The PQP iteration does not need to

s poPGlerations oy, e — apply a try-and-correct procedure

w | |(=step-and-project)
08f / / N -

1 \ ( ( x

2 1 0 1 2 s 4 5 6 7 8
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Changes for the Better

Properties: Asynchronous Update

Only a subset of variables can be updated
ls = (H- +¢)z+ F~
Y lHY+ @)z + FT

o |2];

which is valuable for single-thread multirate architecture (e.g., control system)

Remember that the convergence proof works by:

if 3i: [2)igy (HT + @)z + F7); # 0

2 )i = largming G(&, zn))]i # [2(n) i
[zl = [ = =K (2n) T VI (2())]i # 0

© MERL 9/9/14
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Changes for the Better

Alternative Cost Function Splits

The choice of cost function split is not unique

Absolute value splitting: 20 V.L(2,\) = zo((|H|z+F")—(2H 2+ F~ +\))

o 2H™ +¢)z+ F~
Multiplicative update: z2(r+1) = (H|+ )z + F+ O Z(h)

Often is “slower” than pos-neg split, but sometimes it is more ""robust”

) (J(zny) — J*) D (J(zn) = J7) (J(zny) = J7)
10 — — — — , — e — , — 10 : 100 .
abs-2neg split 10* abs-2neg split i abs-2neg split
: H H . 10 W
pos-neg split \\ pos-neg split pos-neg split
10° | 10" °
10° \\ 10° \\\
\
: § . . \
: I ° ~ = *
10’4 oo : .......... ....... il \
d 2(‘)0 460 6(I)O 860 1 OiOO ! 0400 100 200 300 400 5(I)O 600 700 107100 2000 4000 6000 8000 10000
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Changes for the Better

Convergence Rate

Assume there exists 0 < Ry < Ro: Ry||z||*? < 2’Hz < Rol|2||? ,V2 >0, 2# 0

For {zp) }n, 2(n) > 0, Vh € Zo, there exists p > 0 such that | (’z:)l)__z*” <p

Proof sketch
From convergence proof: [z(,+1)]i — [2(n))i = —[lC(z(h))”VJ(z(h))]i
Then we have: ”ﬁ;’;;;)_;f]]” < p=max(|l —mg|, |1 — M)

Mk = Amin(K(2n)) " V2HK (2()) %) Mny = Amax (K (2) " V2HK(2)71/?)

. _ Rzl [F];
and furthermore: p < max {1 — i { [H+ 2y + FJ; } ) THAX { [Ht 2z + F; }}

<max<1l— min Rl[z&kh)]i max [F];L
p= iez(zr) | [H¥ 25 + Fl; [ ieAGo) | [HT 20, + Fl;

see also, Jian at al, Operators and matrices 2009
© MERL 9/9/14 20/41




AEECTRIC MITSUBISHI ELECTRIC RESEARCH LABORATORIES for a greener tomorrow @

Changes for the Better

Outline

> Multiplicative fixpoints for NNQP
> Application to general QP
» Model predictive control

» Case studies
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Changes for the Better

Application to General Convex QP

In several applications (control) we need to solve the general (convex) QP

: 1 1
min Jp(U) = §U/QPU +F)U + §Mp

s.t. G,U <K,

The dual is the NNQP:  min  Jy(Y) = %Y’QdY +EY + %Md
s.t. Y >0

Qu = GoQ; G, Fy= (K, +GpQ;'F)

Approach: solve the dual and recover the primal

U* = wd2p(Y*) — _ngl(Fp + GpY*)

© MERL 9/9/14 22/41
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Changes for the Better

Convergence for General Convex QPs

The dual NNQP of a primal QP is (in our applications) weakly convex.
Convergence still holds but ... there may be long “almost-flat” updates...
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Dependence on Convexification Parameter

In general the “magnitude” of ¢ reduces the speed of convergence
However, it may reduce “almost-flat” updates

¢ = cgdiag(H™ - 1)

¢y = {1,5,10,20,50}

(J(zny)) = J")

increasing

Cy
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PQP with LGNC-Step (“Kick”)

We accelerate convergence by “perturbing” the sequence of iterates.

Ph
a(zm))

Z(h+1)

We interleave the PQP iteration with optimal line search step along the gradient
directions pointing towards the interior of the nonnegative cone

= (vz'](z(h)))_
VzJ(Z(h))/Ph e
B {WlfthWO
0 otherwise

= zn) + a(zm))pn,

“(h)

VJ(Z(h)‘NK\
< b

(h)

Z(h+1)

*
o, ~*

ZUHC

>
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Changes for the Better

Periodic “Kick” Effects

10° ' 10

Every n=50 iterations
apply a LGNC update < e R

SN
IR NN \
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Changes for the Better

Why is the “Kick” Helping?

PQP can be interpreted as an adaptive stepsize gradient method

el = [zl —
POl = R T2, +

2y = 2y — KGw) T VI ()

The scaling preserves feasibility and it is intrinsic in the iteration update.
Due to nonlinearity it may happen that the iteration “slows down”

Note: the scaling guarantees feasibility of the step at the price of losing the stepsize
as a decision variable -> good for simplicity, but not good for avoiding to slow

© MERL 9/9/14 27/41



AELECTR!C MITSUBISHI ELECTRIC RESEARCH LABORATORIES TR — @“

Changes for the Better

Condition-triggered “Kick” strategy

We can design specific update selection strategies, e.g.:

- chose always the (local) best between PQP and LGNC

- LGNC when several non-optimal coordinates do not contribute to the update

() VI (2))i] < e

|

Z(ht))i — 2] < e

VJ(2)]: > 0 — may be satisfying LC
and < [VJ(2)]; =0— atoptimum
VJ(2)]; <0 — not satisfying LC
(ny + Flil

GNC update

© MERL 9/9/14
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Outline

> Multiplicative fixpoints for NNQP
> Application to general QP
» Model predictive control

» Case studies
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Changes for the Better

LQ-Model Predictive Control and QPs

Control the linear system, subject to state, output, input constraints:
Lmin S Ji(k) S Lmax

x(k+1) = Az(k)+ Bu(k) tmin < (k) < Unax
y(k) — Cl‘(k) + Du(k) Ymin < Y(k) < Ymax
Given x(k), LQ-MPC solves N—1
at every iteration : min eyl + ) il + 1wl Ey + luiel,
4§ i=0
s.t. Tip1|k = Az + Buyp

Yilk = Cxyp + Duyjp
Tmin < Tijk < Tmax, ¢ € Z[1,N]
Umin < Uik < Umax, ¢ € Zjo,N—1]
Ymin < Yilk < Ymax, ¢ € Zjo,N—1]

Lok = J](k),

L . 1 1
by converting it into the QP: min  J,(Ux) = SUQpUk + F,Ux + 5 M,
k
s.t. GpUk S Kp

and then applies:  u(k) =y,

© MERL 9/9/14 30/41
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PQP Application to Model Predictive Control

When applied to MPC the QP is in state-parametric form

1 1
min §U’QpU +2'CU + gx’Qp:c

s.t. G, U < Spx+W

The dual problem can also be computed in parametric form
. 1 A 1,
min iU QpU + z(k)' C,U + 5% Qpx
s.t. G,U < Spx(k)+ W
and so is the dual-primal optimum transformation
U(Y*) = \I/dgp(.ilj, Y*) = Fdx(k) + =47

Termination conditions (primal feasibility + e-suboptimality, absolute and relative)
—Sar — Wi — QuqY < max{e.(|Spz + W,|),eo1}
1
Y'QuY+(x(k) S;+Wy)Y < max {—5§§(Y’QdY +2(x(k) Sq+ Wy)'Y + x(k)' Qqx), 53} :

© MERL 9/9/14 31/41
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PQPMPC: Complete Algorithm

1: k=0

2: loop B
3: hZO,Y(h):Y>O.
4:  repeat

5: if LGNC condition (e.g., mod(h, LSrate)) then
6:

prn = (QaYp) + (k) Sa+Wa)~
(QaYy+a(k) Sa+Wa)'pn .
oY) = 4 P, Qapn it phQapn >0
0 otherwise
Yoy = Yoy +a¥u)pn

7 else

8: for 1 =1:n4 do
9:

[(Qq + )Y + (2(k)'Sg + Wa) "]
Yol = =5 p [Yimli,
[(Qg + &)Y + (z(k)' Sy + Wa)T];

10: end for
11: end if

12: h=h+1

13:  until —Sgz(k) — Wy — QqY < max{...}

and Y'QqY + (x(k)'S, +W3)Y <max{...}
14: setuk)=[ILn 0 ... 0]Taz(k)+EqY)
15 k=k+1
16: end loop

} initialize

\

> LGNC-update

PQP-update

termination,
input selection

© MERL 9/9/14
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Benchmark: Aircraft Pitch and AoA Control

Track pitch and angle of attack of a jet aircraft.

4% order system, 2 inputs
output and input constraints
5 steps horizon,

32 constraints, 10 variables

| Solver | Avg[ms] | Min[ms] | Max[ms] |
GPADM: | 46.567 0.222 | 196.481

( PQPM: | 11.515 0.319 42.618 )
QUADPROG: | 2.954 1.462 7.948
QPACT: | 0.597 0.445 0.986
NAG: | 0.917 0.615 1.387
PQPMEX: | 0.937 0.069 3.553

(" PQPMPC: | 0.444 0.032 1.985

25

‘Corﬁputi‘ng time
distribution -

201

. . . . .
0 0.5 1 1k5 2 25 3

Computing time: PQP and Dual Fast Gradient

I I I
-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1
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Benchmark: Servomotor Position Control

Track the reference position of the load connected to servo by
flexible shaft with torsional and voltage constraints

4t order system,1 input
output and input constraints \' l 0

M

10 steps horizon, A 1T, ) T 6,

40 constraints, 10 variables T ~ [ S} SEN Y f
Mild reference S\ S/
| Solver | Avg[ms] | Min[ms] | Max[ms] | B,
C Ggggﬁf ?'ifé 8'32? 483539516 Y = | Computing time for mild and
QUADPROG: | 1847 | 1.406 | 4.082 | aggressive references

QPACT: | 0571 | 0.452 0.896
NAG: | 0.865 | 0.599 1.637

PQPMEX: | 0.178 0.077 0.987
( PQPMPC: | 0.084 0.040 0491 )

201

Aggressive reference .

5 48 -46 -44 -42 -4
logyo(t)

| Solver | Avg[ms] | Min[ms] | Max[ms] |
GPADM: | 38.896 0.270 | 127.560
C PQPM: | 8.771 0.371 68.309 )
QUADPROG: | 2.363 1.489 7.551
QPACT: | 0.644 0.451 2.525 o

NAG: | 0.852 0.371 1.669 Number of iterations with

PQPMEX: | 0.727 0.078 6.469 and without acceleration _.

10

( PQPMPC: | 0.367 0.040 3.037 ) 0 50 100 150 200

# iterations
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Outline

> Multiplicative fixpoints for NNQP
> Application to general QP
» Model predictive control

> Case studies
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Image Processing Applications: Super-Resolution

Reconstruct a high-resolution image from many low resolution ones
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Brand, Chen, IEEE ICIP2011
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Image Processing Applications: Segmentation

Interactive segmentation: a user labels few pixels and an algorithm propagates the
labels to the rest of the image.
MRF-based-> propagates probabilities

(r) = zi(s))* + drai(r) solve by the dual or
multiplicative update on
augmented Lagrangian

O(108) variables, 5secs

Brand, Chen, IEEE ICIP2011
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Biomedical Applications: Radiation Therapy

Plan the treatment by targeting beams in the appropriate areas to hit the entire
tumor and avoid to hit the healthy tissue and vital organs.

min u'Wu u ~ O(10°),
u
b, c ~ 0O(10°),
S.t. b< Au <c¢ A ~ 0(1(011))

—_—e

Superimpose O(104-10°) beams to irradiate tumors in an O(10°) voxel volume:
- Every tumor voxel has a minimum required dose (covering)
- Every voxel has a unique maximum acceptable dose (packing)
- Minimize excess radiation (L2-norm minimization)

Conventional approaches: 20 minutes to 8 hours. PQP: < 3 seconds
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Control Applications: MPC for Laser Processing

Coordinated control of a (constrained) o
redundantly actuated laser processing machine

Y (m)

Update rate 25ms,
Prediction horizon 1s
40 variables,

588 constraints (2x)
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Haghighat, SDC, Konobrytsky, Bortoff, ASME DSCC 2014
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Real World Applications: MPC for HVAC control

Multivariable constrained control of compressor,
valve, and fan in a room air conditioner

; : Update rate 30s,
| 103 variables, 513 constraints
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Jain, Burns, SDC, Laughman, Bortoff, Refrigeration 2014
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Conclusions and Future Work

Cost function splits results in multiplicative updates with guaranteed convergence.
We obtain algorithms that are simple to code and verify with fast convergence
Performance is (at least) comparable to other methods with similar code complexity.
Multiplicative update seems to provide fast convergence to near-optimum.

Current and future research:

- more detailed study on convergence rate

- bound on number of operations

- better characterization of properties of different splits

- parallelization & implementation in different architectures
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