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Motivations: Large Scale Problems 
Several image processing applications may need solution of optimization problems 
  

Pixel labeling: 

Radiation therapy: 

These are large problems (106 pixels/voxels, …) with structure. 
Hardware requires simple code but it is often parallel (GPU, SIMD) 
  

Super resolution: 
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Motivations: Optimization-based Control 
Massively produced control algorithms are very basics, and microcontroller have 
very limited capabilities 

err = r - y ;!
eint = eint + err ;!
eder = (err – epre) / Ts ;!
epre = err ;!
u = Kp*err + Ki*eint + Kd*eder;!

PI(D) code versus MPC code (30% of it)  

Code verification and validation is long and expensive. 
Simple algorithms are always favored to complex ones. 

Realistic specs: 
166 MHz, FP-capable 
  96 kB RAM,  
  2.5MB Data-ROM 
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Motivations: MPC in Mechatronics 

Fast systems (10Hz - 1KHz, …) 
Low cost embedded CPU, small RAM, ROM 

Unsupervised 

Fast execution. 
Simple algorithm. 
Verifiable code. 

Need optimization algorithms that use few resources, run fast… 
 … and are simple to code and verify … 
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Algorithm Objectives 

Solve large problems 
 
Massive parallelization (image processing) 
 
Simple code (control system) 
 
“Fast” convergence 
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Outline 

Ø  Multiplicative fixpoints for NNQP 

Ø  Application to general QP 

Ø  Model predictive control 

Ø  Case studies 
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Optimality Conditions for NNQP 

Consider the Non-Negative Quadratic Program (NNQP)   (     ) 

min
z

J(z) =
1

2
z0Hz + F 0z +M

s.t. z � 0,

L(z,�) = 1
2z

0Hz + F 0z � �0zwith Lagrangian: 

Under strict complementarity (assuming z>0, possibly infinitesimally)  
the optimality conditions are 

from variational methods (but also KKT under strict complementarity) 

[z]i � 0, i 2 Z[1,nz ], [�]i � 0, i 2 Z[1,nz ]

H > 0

z � rzL(z,�) = 0

� � r�L(z,�) = 0

z � (Hz + F � �) = 0

� � z = 0
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Cost Split and Fixpoint 
Split the cost function in two parts in the optimality condition 

We design an algorithm to achieve such fixpoint without the need to estimate λ. 

Then, the optimal solutions are fixpoints of    

For active constraints: 

For inactive constraints: [�]i = 0 =) [(H+z + F+)]i = [(H�z + F�)]i

[�]i > 0 =) [z]i = 0

z =
H�z + F�

H+z + F+
� z

z � rzL(z,�) = z � ((H+z + F+)� (H�z + F� + �)) = 0.

“Matrix Splitting Methods”, P. Tseng, SIAM 1991, …, Springer 2009 
"Multiplicative updates for nonnegative quadratic programming”, Sha, et. al., , Neural Computation, 2007  
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Multiplicative Update Iteration 

where     is a (usually small) constant matrix chosen to guarantee convergence. 

z(h+1) =
(H� + �)z + F�

(H+ + �)z + F+
� z(h)

z � (Hz + F � �) = z � ((H+z + F+ + �z)� (H�z + F� + �+ �z)).

For any matrix  

Starting from            we apply the multiplicative update 

�

�

Note: does not estimate      (no need to…) �

z > 0
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Proof of Convergence 

J(⇠) = J(z) + (⇠ � z)0rJ(z) +
1

2
(⇠ � z)0H(⇠ � z)

K(z) = diag

✓
[(H+ + �)z + F+]i

[z]i

◆

8⇠ � 0, z > 0, G(⇠, z) � J(⇠)

z(h+1) = argmin
⇠

G(⇠, z(h))

lim
h!1

z(h) = z⇤, z⇤ � 0

Expand cost function : 

Define the function : 

Proof strategy 

1. 

2. 

3. 

4. 

J(z(h+1))  G(z(h+1), z(h)) < G(z(h), z(h)) = J(z(h))

G(⇠, z) = J(z) + (⇠ � z)0rJ(z) + 1
2 (⇠ � z)0K(z)(⇠ � z)

If �+ diag(F+
)diag(z)�1

+H� � 0 for all z > 0,

z(h+1) =
(H�+�)z(h)+F�

(H++�)z(h)+F+ � z(h) ) lim

z!1
z(h) = z⇤
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For any symmetric nonnegative    ,   

Proof: Upper Bounding Function 

K(z)�H � 0

H̄+ , H+ + �
H̄� , H� + �

Kpsd(z) = diag(H̄+z)diag(z)�1 � H̄+

K(z)�H = (diag(H̄+z)diag(z)�1 � H̄+) + (diag(F+)diag(z)�1 + H̄�)

Knn(z) = diag(F+)diag(z)�1 + H̄�

Kpsd(z) � 0�

Knn(z) � 0So we can  choose     such that �

For some non-negative symmetric matrix � that depends only on H,

G(⇠, z) for any z > 0 upper bounds J(⇠), for any ⇠ � 0

� = diag(H�1)E.g.: 
9/9/14 10/41 
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Proof: Minimization of Bounding Function 

r⇠G(⇠, z) = rJ(z) +K(z)(⇠ � z) = 0

⇠ = z �K(z)�1rJ(z)

= z �K(z)�1((H+ + �)z + F+) +K(z)�1((H� + �)z + F�)

= diag(z)diag((H+ + �)z + F+)�1((H� + �)z + F�).

⇠ � 0

Optimality condition: 

Also, any            results in  z > 0

The value ⇠ =

(H�+�)z+F�

(H++�)z+F+ � z minimizes G(⇠, z) for any z > 0

J(z)

G(⇠, z1)

z1 ⇠⇤1 G(⇠, z2)

z2
⇠⇤2

z3
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Proof: Monotonic Cost Decrease 

@2

@[z(h+1)]2i
G(z(h+1), z(h)) = [K(z(h))]ii =

[(H+ + �)z(h) + F+]i
[z(h)]i

> 0 .

[z(h+1)]i � [z(h)]i = �[K(z(h))
�1rJ(z(h))]i 6= 0

J(z(h+1))  G(z(h+1), z(h)) < G(z(h), z(h)) = J(z(h))

We have convexity and strict convexity for i-th variable 

[z(h+1)]i = [argmin⇠ G(⇠, z(h))]i 6= [z(h)]iWe have 

Given z(h) 6= z⇤, if 9i : [z]i(h)[(H
+ + �)z(h) + F+]i 6= 0:
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Proof: Convergence to Optimum 

Given               the sequence generated by the multiplicative update is such that  z(0) > 0

lim
h!1

J(z(h)) = J⇤ lim
h!1

z(h) = z⇤

[z(h+1)]i � [z(h)]i = �[K(z(h))
�1rJ(z(h))]i 6= 0

optimality condition for NNQP 

z > 0 =) rJ(z) = 0 and by convexity  rJ(z) = 0 , z = z⇤

lim
h!1

{J(z(h))}h = J̄ but the only stationary point is z⇤

lim
h!1

{J(z(h))}h = J̄ = J⇤

z
(h)

= z
(h+1)

, z � rJ(z) = 0

9/9/14 13/41 
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Examples: Cost Sequences 

Random NNQP 

(J(z(h))� J⇤)

(J(z(h))� J⇤)

60 variables 

1000 variables 
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Multiplicative Update: Properties 

1. Projection: not needed since if                  then     J 
 

2. Monotonicity: cost sequence is monotonic             J 
 

3. Convergence rate: linear convergence can be proved (for            ) 
 

4. Complexity order:                  versus                         for general I.P. methods       
 

5. Operation types: sums, multiplications J, divisions L 
 

6. Parallelizability:  easy due to the update J  

z(h+1) > 0z(h) > 0

J(z(h+1)) < J(z(h)), 8h 2 R0+

H > 0

O(n2
z · p) O(n3

z · log(p))

[z(h+1)]i =
[(H� + �)z(h) + F�]i
[(H+ + �)z(h) + F+]i

[z(h)]iIteration update (simple J): 

p = # precision digits 

The algorithm is called Parallel Quadratic Programming (PQP) because of 6  
(and by 1, PQP could be also “Projection-free QP” ).  

(numerator-denominator: 0-complementary)  

(can exploit matrix bandwidth)     
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Multiplicative Update: Vector Field 
The multiplicative update defines a (static) vector field on the feasible domain 

the denominator acts as a “barrier” that repels from the border of the feasible set 
except in a manifold leading to the optimum 

9/9/14 16/41 
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Properties: Projection-free 
The multiplicative update does not need an (explicit) projection. 
Although inexpensive in NNQP projection can deteriorate performance… 

x1

x2 5 PQP Iterations 

Optimum  50 PG Iterations 

Constraint 
★ The PQP iteration does not need to 

apply a try-and-correct procedure  
(= step-and-project) 

9/9/14 17/41 
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Properties: Asynchronous Update 

Only a subset of variables can be updated 

[z(h+1)]i � [z(h)]i = �[K(z(h))
�1rJ(z(h))]i 6= 0

[z(h+1)]i = [argmin⇠ G(⇠, z(h))]i 6= [z(h)]i

[⇠]i =


(H� + �)z + F�

(H+ + �)z + F+

�

i

� [z]i

which is valuable for single-thread multirate architecture (e.g., control system) 

Remember that the convergence proof works by: 

if 9i : [z]i(h)((H
+ + �)z(h) + F+)i 6= 0:
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Alternative Cost Function Splits 
The choice of cost function split is not unique  

z(h+1) =
(2H� + �)z + F�

(|H|+ �)z + F+
� z(h)

Often is “slower” than pos-neg split, but sometimes it is more ``robust’’  

Absolute value splitting: 

abs-2neg split 
pos-neg split       

 

z � rzL(z,�) = z � ((|H|z + F+)� (2H�z + F� + �))

Multiplicative update: 

abs-2neg split 
pos-neg split       

 

abs-2neg split 
pos-neg split       

 

(J(z(h))� J⇤) (J(z(h))� J⇤)(J(z(h))� J⇤)
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© MERL 

MITSUBISHI ELECTRIC RESEARCH LABORATORIES!

Convergence Rate 

For {z(h)}h, z(h) > 0, 8h 2 Z0+, there exists ⇢ > 0 such that

kz(h+1)�z⇤k
kz(h)�z⇤k  ⇢

M
(h) = �

max

(K(z)�1/2HK(z)�1/2)m(h) = �min(K(z(h))
�1/2HK(z(h))

�1/2)

Proof sketch 

[z(h+1)]i � [z(h)]i = �[K(z(h))
�1rJ(z(h))]iFrom convergence proof: 

Then we have: 

and furthermore: 

see also, Jian at al, Operators and matrices 2009 

⇢  max

(
1� min

i2I(z⇤)

(
¯R1[z

⇤
(h)]i

[H+z⇤(h) + F ]i

)
, max

i2A(z⇤)

(
[F ]

+
i

[H+z⇤(h) + F ]i

))

⇢  max

⇢
1�min

i

⇢
R1[z(h)]i

[H+z(h) + F ]i

�
,max

i

⇢
[F ]

+
i

[H+z(h) + F ]i

��

Assume there exists 0 < R1  R2: R1kzk2  z0Hz  R2kzk2 , 8z � 0, z 6= 0

kz(h+1)�z⇤k
kz(h)�z⇤k  ⇢ = max(|1�m(h)|, |1�M(h)|)
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Outline 

Ø  Multiplicative fixpoints for NNQP 

Ø  Application to general QP 

Ø  Model predictive control 

Ø  Case studies 
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Application to General Convex QP 
In several applications (control) we need to solve the general (convex) QP 

min
U

Jp(U) =
1

2
U 0QpU + F 0

pU +
1

2
Mp

s.t. GpU  Kp

U⇤ =  d2p(Y
⇤) = �Q�1

p (Fp +GpY
⇤)

The dual is the NNQP: min
Y

Jd(Y ) =
1

2
Y 0QdY + FdY +

1

2
Md

s.t. Y � 0

Approach: solve the dual and recover the primal 

Qd = GpQ�1
p G0

p, Fd = (Kp +GpQ�1
p Fp)

9/9/14 22/41 
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Convergence for General Convex QPs 
The dual NNQP of a primal QP is (in our applications) weakly convex. 
Convergence still holds but … there may be long “almost-flat” updates… 

(J(z(h))� J⇤)
(J(z(h))� J⇤)

(J(z(h))� J⇤)
(J(z(h))� J⇤)
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Dependence on Convexification Parameter 
In general the “magnitude” of        reduces the speed of convergence 
However, it may reduce “almost-flat” updates   

� = c�diag(H
� · 1)

c� = {1, 5, 10, 20, 50}

increasing cφ increasing cφ 

increasing cφ increasing cφ 

(J(z(h))� J⇤)

(J(z(h))� J⇤)
(J(z(h))� J⇤)

(J(z(h))� J⇤)

�

9/9/14 24/41 
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PQP with LGNC-Step (“Kick”) 

ph = (rzJ(z
(h)))

�

↵(z
(h)) =

⇢
�

rzJ(z(h))
0ph

p0
h
Hph

if p0
hHph>0

0 otherwise

z
(h+1)

= z
(h) + ↵(z

(h))ph,

We accelerate convergence by “perturbing” the sequence of iterates. 

We interleave the PQP iteration with optimal line search step along the gradient 
directions pointing towards the interior of the nonnegative cone   
 

★ 

p(h)

rJ(z(h))

z(h)
z(h+1)

z⇤
z⇤unc

gradient field
PQP 1-steps

OPT
4 iters PQP + 1 kick

5 iters PQP
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Periodic “Kick” Effects 

Every n=50 iterations 
apply a LGNC update 

(J(z(h))� J⇤) (J(z(h))� J⇤)

(J(z(h))� J⇤) (J(z(h))� J⇤) (J(z(h))� J⇤)
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Why is the “Kick” Helping? 

PQP can be interpreted as an adaptive stepsize gradient method 

[z(h+1)]i = [z(h)]i �
[z(h)]i

[H+z(h) + F+]i
[Hz(h) + F ]i,

The scaling preserves feasibility and it is intrinsic in the iteration update.  
Due to nonlinearity it may happen that the iteration “slows down” 
 

z(h+1) = z(h) �K(z(h))
�1rJ(z(h))

Note: the scaling guarantees feasibility of the step at the price of losing the stepsize 
as a decision variable -> good for simplicity, but not good for avoiding to slow 

9/9/14 27/41 
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Condition-triggered “Kick” strategy 
We can design specific update selection strategies, e.g.: 

 - chose always the (local) best between PQP and LGNC 

 - LGNC when several non-optimal coordinates do not contribute to the update  

|[K(z)�1rJ(z)]i| < ✏ at optimum 

may be satisfying LC  

not satisfying LC 

[z(h+1)]i � [z(h)]i <
✏2

|[Hz(h) + F ]i|

and 

=) =)

GNC update 

8
>>>><

>>>>:

[rJ(z)]i > 0 !

[rJ(z)]i = 0 !

[rJ(z)]i < 0 !
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Outline 

Ø  Multiplicative fixpoints for NNQP 

Ø  Application to general QP 

Ø  Model predictive control 

Ø  Case studies 
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LQ-Model Predictive Control and QPs 

Given        , LQ-MPC solves  
at every iteration : 

by converting it into the QP: min
Uk

Jp(Uk) =
1

2
U 0
kQpUk + F 0

pUk +
1

2
Mp

s.t. GpUk  Kp

Control the linear system, subject to state, output, input constraints: 

and then applies:  
9/9/14 30/41 

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

x

min

 x(k)  x

max

u

min

 u(k)  u

max

y

min

 y(k)  y

max

min
Uk

kxN |kk2PM
+

N�1X

i=0

kxi|kk2QM
+ kyi|kk2SM

+ kui|kk2RM

s.t. xi+1|k = Axi|k +Bui|k

yi|k = Cxi|k +Dui|k

x

min

 xi|k  x

max

, i 2 Z
[1,N ]

u

min

 ui|k  u

max

, i 2 Z
[0,N�1]

y

min

 yi|k  y

max

, i 2 Z
[0,N�1]

x

0|k = x(k),

u(k) = u⇤
0|k

x(k)
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and so is the dual-primal optimum transformation 

PQP Application to Model Predictive Control 
When applied to MPC the QP is in state-parametric form 

min
U

1

2
U

0
QpU + x

0
C

0
pU +

1

2
x

0⌦px

s.t. GpU  Spx+W

The dual problem can also be computed in parametric form 

Termination conditions (primal feasibility + ε-suboptimality, absolute and relative) 

9/9/14 31/41 

min
U

1

2
U

0
QpU + x(k)0C 0

pU +
1

2
x

0⌦px

s.t. GpU  Spx(k) +W

Y

0
QdY+(x(k)

0
S

0
d+Wd)Y  max

⇢
�"

r
J
1

2

(Y

0
QdY + 2(x(k)

0
Sd +Wd)

0
Y + x(k)

0
⌦dx), "

a
J

�
.

�Sdx�Wd �QdY  max{"rc(|Spx+Wp|), "ac1}

U(Y ⇤) =  d2p(x, Y
⇤) = �dx(k) + ⌅dY

⇤
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PQPMPC: Complete Algorithm 

initialize 

LGNC-update 

PQP-update 

termination,  
input selection 

9/9/14 32/41 

1: k = 0

2: loop

3: h = 0, Y(h) =
¯

Y > 0.

4: repeat

5: if LGNC condition (e.g., mod(h,LSrate)) then

6:

p

h

= (Q

d

Y(h) + x(k)

0
S

d

+W

d

)

�

↵(Y(h)) =

(
� (QdY(h)+x(k)0Sd+Wd)

0
ph

p

0
hQdph

if p

0
h

Q

d

p

h

> 0

0 otherwise

Y(h+1) = Y(h) + ↵(Y(h))ph

7: else

8: for i = 1 : n

d

do

9:

[Y(h+1)]i =
[(Q

�
d

+ �)Y(h) + (x(k)

0
S

0
d

+W

d

)

�
]

i

[(Q

+
d

+ �)Y(h) + (x(k)

0
S

0
d

+W

d

)

+
]

i

[Y(h)]i,

10: end for

11: end if

12: h = h+ 1

13: until �S

d

x(k)�W

d

�Q

d

Y  max{. . .}
and Y

0
Q

d

Y + (x(k)

0
S

0
d

+W

d

)Y  max {. . .}
14: set u(k) =

⇥
I

m

0 . . . 0

⇤
(�

d

x(k) + ⌅

d

Y )

15: k = k + 1

16: end loop
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Benchmark: Aircraft Pitch and AoA Control 
Track pitch and angle of attack of a jet aircraft. 

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
0

5

10

15

20

25

log

10

(t
CPU

)

Solver Avg[ms] Min[ms] Max[ms]

GPADM: 46.567 0.222 196.481
PQPM: 11.515 0.319 42.618

QUADPROG: 2.954 1.462 7.948
QPACT: 0.597 0.445 0.986

NAG: 0.917 0.615 1.387
PQPMEX: 0.937 0.069 3.553
PQPMPC: 0.444 0.032 1.985

0 0.5 1 1.5 2 2.5 3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

k

t C
P
U
[s
]

4th order system, 2 inputs 
output and input constraints 
5 steps horizon,  
32 constraints, 10 variables  

Computing time  
distribution 

Computing time: PQP and Dual Fast Gradient 
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Benchmark: Servomotor Position Control 
Track the reference position of the load connected to servo by 
flexible shaft with torsional and voltage constraints 

Solver Avg[ms] Min[ms] Max[ms]

GPADM: 9.481 0.268 43.356
PQPM: 1.418 0.367 8.891

QUADPROG: 1.847 1.406 4.082
QPACT: 0.571 0.452 0.896

NAG: 0.865 0.599 1.637
PQPMEX: 0.178 0.077 0.987
PQPMPC: 0.084 0.040 0.491

Solver Avg[ms] Min[ms] Max[ms]

GPADM: 38.896 0.270 127.560
PQPM: 8.771 0.371 68.309

QUADPROG: 2.363 1.489 7.551
QPACT: 0.644 0.451 2.525

NAG: 0.852 0.371 1.669
PQPMEX: 0.727 0.078 6.469
PQPMPC: 0.367 0.040 3.037
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Outline 

Ø  Multiplicative fixpoints for NNQP 

Ø  Application to general QP 

Ø  Model predictive control 

Ø  Case studies 

9/9/14 35/41 



© MERL 

MITSUBISHI ELECTRIC RESEARCH LABORATORIES!

Image Processing Applications: Super-Resolution 

Reconstruct  a 285x245 image from 30 images 57x49  

min
1

2

KX

k=1

kDkSkf � gkk2

s.t. f � 0

Reconstruct a high-resolution image from many low resolution ones 

Brand, Chen, IEEE ICIP2011 
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Image Processing Applications: Segmentation 
Interactive segmentation: a user labels few pixels and an algorithm propagates the 

labels to the rest of the image.  
MRF-based-> propagates probabilities 

solve by the dual or 
multiplicative update on 
augmented Lagrangian 

O(106) variables, 5secs 

Brand, Chen, IEEE ICIP2011 

min
1

2

KX

k=1

X

r2⌦

⌘

2

X

s2N (r)

!rs(xk(r)� xk(s))
2 + drkxk(r)

s.t. xk(r) � 0
KX

k=1

xk(r) = 1
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Biomedical Applications: Radiation Therapy 
Plan the treatment by targeting beams in the appropriate areas to hit the entire 
tumor and avoid to hit the healthy tissue and vital organs. 

Superimpose O(104-105) beams to irradiate tumors in an O(106) voxel volume: 
-  Every tumor voxel has a minimum required dose (covering) 
-  Every voxel has a unique maximum acceptable dose (packing) 
-  Minimize excess radiation (L2-norm minimization) 

Conventional approaches: 20 minutes to 8 hours. PQP: < 3 seconds 

min
u

u0Wu

s.t. b  Au  c

u ⇡ O(105),
b, c ⇡ O(106),
A ⇡ O(1011)
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Control Applications: MPC for Laser Processing 
Coordinated control of a (constrained) 
redundantly actuated laser processing machine 

Update rate 25ms,  
Prediction horizon 1s 
40 variables,  
588 constraints (2x) 

Haghighat, SDC, Konobrytsky, Bortoff, ASME DSCC 2014 
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Real World Applications: MPC for HVAC control 
Multivariable constrained control of compressor, 
valve, and fan in a room air conditioner 

Update rate 30s,  
103 variables, 513 constraints 

heat load 

Jain, Burns, SDC, Laughman, Bortoff, Refrigeration 2014 
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Conclusions and Future Work 
Cost function splits results in multiplicative updates with guaranteed convergence.  
We obtain algorithms that are simple to code and verify with fast convergence 
Performance is (at least) comparable to other methods with similar code complexity. 
Multiplicative update seems to provide fast convergence to near-optimum. 

Current and future research: 
 - more detailed study on convergence rate 
 - bound on number of operations 
 - better characterization of properties of different splits 
 - parallelization & implementation in different architectures 
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