PhD Program in “Cognitive and Cultural Systems”
Track in “Cognitive, Computational and Social Neurosciences”
(CCSN)

Course List - A.Y. 2019/20
<table>
<thead>
<tr>
<th>Course</th>
<th>Lecturer(s)</th>
<th>Hours</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Neuroimaging</td>
<td>Nicola Vanello; Mauro Costagli</td>
<td>24</td>
<td>X</td>
</tr>
<tr>
<td>Advanced Topics in Network Theory: Algebraic Concepts in Network Theory</td>
<td>Guido Caldarelli</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>Advanced Topics in Network Theory: Brain Networks</td>
<td>Guido Caldarelli</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>Advanced Topics in Network Theory: Dynamical Models in Network Theory</td>
<td>Guido Caldarelli</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>Advanced Topics in Network Theory: Research Topics in Network Theory</td>
<td>Guido Caldarelli</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>Advanced Topics in Network Theory: Topological Concepts in Network Theory</td>
<td>Guido Caldarelli</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>Basic Linear Algebra and Statistics for Neuroscience</td>
<td>Giorgio Gnecco; Francesco Serti</td>
<td>20</td>
<td>C</td>
</tr>
<tr>
<td>Basic Principles and Applications of Brain Imaging Methodologies to Neuroscience</td>
<td>Emiliano Ricciardi; Luca Cecchetti</td>
<td>52</td>
<td>C</td>
</tr>
<tr>
<td>Basic principles and Applications of Electrophysiology and Stimulation Techniques</td>
<td>Giulio Bernardi; Luca Turella; Simone Rossi</td>
<td>38</td>
<td>C</td>
</tr>
<tr>
<td>Basic Programming for Neuroscience</td>
<td>Monica Betta</td>
<td>16</td>
<td>X</td>
</tr>
<tr>
<td>Biosignals, Bionics and Neuroscience (long seminar without exam)</td>
<td>Michele Emdin; Enzo Pasquale Scilingo; Domenico Prattichizzo</td>
<td>24</td>
<td>X</td>
</tr>
<tr>
<td>Clinical Psychopathology and Psychiatry</td>
<td>Pietro Pietrini</td>
<td>16</td>
<td>X</td>
</tr>
<tr>
<td>Cognitive Economics</td>
<td>Luca Polonio</td>
<td>20</td>
<td>X</td>
</tr>
<tr>
<td>Computer Programming and Methodology</td>
<td>Mirco Tribastone</td>
<td>30</td>
<td>X</td>
</tr>
<tr>
<td>Contextual Analysis and Individual Objects: Arts, Sciences, Techniques, Beliefs</td>
<td>Linda Bertelli</td>
<td>30</td>
<td>X</td>
</tr>
<tr>
<td>Critical Thinking (no exam)</td>
<td>Gustavo Cevolani</td>
<td>16</td>
<td>X</td>
</tr>
<tr>
<td>Cybersecurity (essentials)</td>
<td>Rocco De Nicola</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>Decision-Making in Economics & Management</td>
<td>Massimo Riccaboni</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>Forensic and Legal Psychology</td>
<td>Pietro Pietrini</td>
<td>16</td>
<td>X</td>
</tr>
<tr>
<td>Foundations of Probability and Statistical Inference</td>
<td>Irene Crimaldi</td>
<td>30</td>
<td>X</td>
</tr>
<tr>
<td>Funding and Management of Research and Intellectual Property (no exam)</td>
<td>Marco Paggi</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>Game Theory</td>
<td>Ennio Bilancini</td>
<td>20</td>
<td>X</td>
</tr>
<tr>
<td>Introduction to Cognitive and Social Neuroscience</td>
<td>Pietro Pietrini; Emiliano Ricciardi</td>
<td>32</td>
<td>X</td>
</tr>
<tr>
<td>Introduction to Consciousness and Sleep</td>
<td>Giulio Bernardi</td>
<td>14</td>
<td>X</td>
</tr>
<tr>
<td>Course</td>
<td>Instructor</td>
<td>Credits</td>
<td>Exam</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Introduction to Network Theory</td>
<td>Guido Caldarelli</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>Introduction to Neuro-Linguistics</td>
<td>Alessandra Rampinini</td>
<td>12</td>
<td>X</td>
</tr>
<tr>
<td>Introduction to Neuropsychology</td>
<td>Francesca Garbarini</td>
<td>12</td>
<td>X</td>
</tr>
<tr>
<td>Introduction to Psychophysics</td>
<td>Davide Bottari</td>
<td>12</td>
<td>X</td>
</tr>
<tr>
<td>Machine Learning</td>
<td>Giorgio Gnecco</td>
<td>20</td>
<td>X</td>
</tr>
<tr>
<td>Management of Complex Systems: Approaches to Problem Solving</td>
<td>Andrea Zocchi</td>
<td>40</td>
<td>X</td>
</tr>
<tr>
<td>Matrix Algebra</td>
<td>Giorgio Gnecco</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>Neurobiology of Emotion and Behavior</td>
<td>Pietro Pietrini</td>
<td>12</td>
<td>C</td>
</tr>
<tr>
<td>Neuroeconomics</td>
<td>Luca Polonio</td>
<td>20</td>
<td>X</td>
</tr>
<tr>
<td>Neuroscience of Perception and Experience-Dependent Plasticity</td>
<td>Emiliano Ricciardi</td>
<td>46</td>
<td>C</td>
</tr>
<tr>
<td>Neuroeconomics</td>
<td>Davide Bottari</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical Methods for the Solution of Partial Differential Equations</td>
<td>Marco Paggi</td>
<td>20</td>
<td>X</td>
</tr>
<tr>
<td>Philosophical and Ethical Themes in Neuroscience (no exam)</td>
<td>Mirko Daniel Garasic</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>Philosophy and Neuroscience in Moral Reasoning</td>
<td>Gustavo Cevolani</td>
<td>12</td>
<td>X</td>
</tr>
<tr>
<td>Philosophy of Science (no exam)</td>
<td>Gustavo Cevolani</td>
<td>16</td>
<td>X</td>
</tr>
<tr>
<td>Principles of Brain Anatomy and Physiology</td>
<td>Luca Cecchetti</td>
<td>30</td>
<td>C</td>
</tr>
<tr>
<td>Research Seminars (no exam)</td>
<td>Pietro Pietrini; Emiliano Ricciardi</td>
<td>60</td>
<td>X</td>
</tr>
<tr>
<td>Scientific Writing, Dissemination and Evaluation (no exam)</td>
<td>TBD</td>
<td>8</td>
<td>X</td>
</tr>
</tbody>
</table>
Advanced Neuroimaging
Nicola Vanello; Mauro Costagli
24 hours

Course description will be available soon.
Advanced Topics in Network Theory: Algebraic Concepts in Network Theory
Guido Caldarelli
10 Hours

Learning Outcomes:
Manipulation of adjacency matrices and algorithms connected

Abstract:
we shall provide the definitions of the algebraic concepts lying at the core of network theory and shall introduce the principles of network analysis with Python. This module is propaedeutic for modules 3, 4, 5.

Lecture Contents:
Binary, undirected networks: basic definitions; spectral properties; functions of the adjacency matrix. Other network representations (directed, weighted, bipartite, multiplex networks) and generalization of the results above. Other representations of network data (5h)
Python: Jupiter notebook; variables, lists, dictionaries; loops (for, while); functions; files management; errors (2h)
NumPy: arrays and functions; spectral properties; other representations for large datasets (3h)

Teaching Method:
Slides and Lab

Bibliography:
● G. Caldarelli Scale-Free Networks OUP (2007) (made available to students).
● Easley, Kleinberg “Networks Crowds and Markets” CUP (2010)
● http://barabasilab.neu.edu/networksciencebook/
● G. Caldarelli A. Chessa Data Science and Complex Networks OUP (made available to students)

Final Exam:
the candidate will work in the classroom and we shall assign a “pass” or “retake” vote at the end of course.

Prerequisites: Introduction Course
Advanced Topics in Network Theory: Brain Networks
Guido Caldarelli
10 Hours

Learning Outcomes:
to be able to know the functioning of the various measuring instruments and to be able to correlate and model different measures on brain activity. We also want to teach brain structure and areas of interests

Abstract:
we shall provide the tools to measure and analyze the different kinds of networks that can be defined when studying the human brain (e.g. the functional and the structural one).

Lecture Contents:
Physics of the measuring instruments, structure of the Brain, connectome, networks from time series

Teaching Method:
slides and working in groups on pc

Bibliography:
• G. Caldarelli Scale-Free Networks OUP (2007) (made available to students).
• http://barabasilab.neu.edu/networksciencebook/
• Other texts will be suggested in the various lectures (basic biblio in this list)

Final Exam:
the candidate will work in the classroom and we shall assign a "pass" or "retake" vote at the end of course.

Prerequisites:
Introduction to Complex Networks
Advanced Topics in Network Theory: Dynamical Models in Network Theory
Guido Caldarelli
10 Hours

Learning Outcomes:
Being able to generate synthetic networks through computer coding

Abstract:
we shall review the most popular growth models for networks, the details of the most studied dynamical processes on networks and their implementation in Python.

Lecture Contents:
Growth models: the Barabasi-Albert original model; further properties of the Barabasi-Albert model; the Bianconi-Barabasi model; the Medo-Cimini-Gualdi model (4h)
Dynamics “of” and “on” networks: small-world model; percolation; epidemics on networks (4h)
Exercises in Python + NetworkX (2h)

Teaching Method:
slides and working groups

Bibliography:
- Easley, Kleinberg “Networks Crowds and Markets” CUP (2010)
- http://barabasilab.neu.edu/networksciencebook/
- Other texts will be suggested in the various lectures (basic biblio in this list)

Final Exam:
the candidate will work in the classroom and we shall assign a “pass” or “retake” vote at the end of the course.

Prerequisites:
Introduction and Algebraic properties.
Learning Outcomes:
To be able to select stat-of-the-art problems in the area of complex networks

Abstract:
we shall review the latest developments in research concerning the field of network theory. This module requires module 2. The course “Advanced Methods for Complex Systems I” is suggested as a prerequisite.

Lecture Contents:
The Exponential Random Graph Model: constrained entropy maximization; parameter estimation; computing expectations and errors; a quick look at perturbation theory for networks (2h)
Hypothesis testing on networks: projecting and filtering bipartite networks; early-warning signals detection; community detection techniques for correlation matrices (asset graph, MSF, dendrogram-cutting, the Masuda approach, random matrix theory-based techniques) (3h)
Network reconstruction; applications to the World Trade Web; comparison between network models and econometric models; applications to financial networks; link prediction (3h)

Teaching Method:
slides and working on pc

Bibliography:
• G. Caldarelli Scale-Free Networks OUP (2007) (made available to students).
• Easley, Kleinberg "Networks Crowds and Markets" CUP (2010)
• http://barabasilab.neu.edu/networksciencebook/
• Other texts will be suggested in the various lectures (basic biblio in this list)

Final Exam:
the candidate will work in the classroom and we shall assign a “pass” or “retake” vote at the end of the course.

Prerequisites:
Introduction to Network Theory.
Advanced Topics in Network Theory: Topological Concepts in Network Theory
Guido Caldarelli
10 Hours

Learning Outcomes:
To be able to work on graphs as for example to be able to detect centrality and communities structures

Abstract:
we shall introduce the definitions of the main topological quantities of interest in network theory and their implementation in Python.

Lecture Contents:
Centrality metrics: degree; closeness; betweenness; eigenvector; Katz; hub/authority; PageRank (2h)
Exercises in Python + NetworkX (2h)
Mesoscale structures detection: Girvan-Newman algorithm and modularity; spectral methods; Louvain; the limitations of modularity; surprise; block-model fitting; community detection for bipartite networks; core-periphery structure; bow-tie structure (6h)

Teaching Method:
Slides and lab

Bibliography:
- Easley, Kleinberg “Networks Crowds and Markets” CUP (2010)
- http://barabasilab.neu.edu/networksciencebook/
- G. Caldarelli A. Chessa Data Science and Complex Networks OUP (made available to students)

Final Exam:
the candidate will work in the classroom and we shall assign a “pass” or “retake” vote at the end of the course.

Prerequisites:
This module requires module 2 (Algebraic properties) and Introduction to Networks.
Learning Outcomes:
The course is aimed to introduce basic notions of linear algebra and its applications to Neuroscience. It is focused more on applications than on theory.

Abstract:
This course provides a basic introduction to linear algebra to students with no (or minimal) background on it. The emphasis is on the description of some applications of linear algebra, including some of interest to students in neuroscience, such as basic image processing, principal component analysis, and spectral clustering. More advanced material will be provided upon request to students having already a solid background in linear algebra.

Lecture Contents:
- Historical introduction.
- Sum of two matrices, scalar multiplication, convex combination. Application to image processing.
- Vectors, vector norms, and transposition. Application to movie ratings and digit recognition.
- Product of a row vector and a column vector, cosine similarity. Application to movie ratings.
- Matrix product. Application to image processing.
- Linear systems, Gaussian elimination, Cramer's rule. Application to cryptography and to computed tomography.
- Least squares. Application to score prediction in races.
- Eigenvalues and eigenvectors. Application to graph centrality and spectral clustering.
- Matrix powers. Application to genetics.
- Principal component analysis, linear discriminant analysis, singular value decomposition. Application to image processing.
- Markov chains. Application to games and web surfing.
- Exercises on the blackboard on the following topics: sum of matrices, scalar multiplication, matrix product, Cramer's rule, Gaussian elimination, eigenvectors and eigenvalues, determinants.

Teaching Method:
The teacher will project slides on the screen (a copy of the slides will be provided to the students). He will also solve some exercises on the blackboard.

Bibliography:
Tim Chartier, When life is linear: from computer graphics to bracketology, MAA Press, 2015.

Final Exam: Final written examination (2 hours)
Prerequisites:
None
Basic Linear Algebra and Statistics for Neuroscience (Statistics part)
Francesco Serti
10 Hours

Learning Outcomes:
To provide students with an introduction to probability and statistics.

Abstract:
This part of the course will provide students with an introduction to probability and statistics and it will be focused on topics that are particularly relevant to neuroscience. The lessons will be designed for students with a minimum knowledge of the subject.

Lecture Contents:
The topics covered will be:

- Introduction to probability: random variables, discrete and continuous distributions
- Introduction to statistics: definition of statistical model, estimate and estimator, point estimation and interval estimation
- Statistical tests: parametric and non parametric tests
- Analysis of Variance: one-way and two-way ANOVA
- Relation between variables: linear model, multiple regression

Teaching Method:
Each class will consist of a first introductory part with basic notions of statistics and of a second part in which those notions are applied to examples.

Bibliography:
"Learning to use statistical tests in psychology" by J. Green and M. D'Oliveira

Final Exam:
The final exam will consist of questions on the basic notions of probability and statistics covered in class and on some empirical applications.

Prerequisites:
None
Basic Principles and Applications of Brain Imaging Methodologies to Neuroscience
Emiliano Ricciardi, Luca Cecchetti
52 Hours

Learning Outcomes:
At the end of the course, students are expected to have a general background knowledge of the basic principles, methodologies and applications of the most important brain functional techniques and to be prepared to evaluate the applicability of, and the results provided by these methodologies for different problems in cognitive and clinical neuroscience.

Abstract:
The course aims at introducing the fundamentals of brain metabolism and brain imaging methodologies. Neuroimaging techniques provided cognitive and social neuroscience with an unprecedented tool to investigate the neural correlates of behavior and mental functions. Here we will specifically review the basic principles, research and clinical applications of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Solid background in the concepts common to many types of neuroimaging, ranging from study design to data processing and interpretation, will be discussed to address neuroscientific questions. In particular, we will first review the basics of neurophysiology to understand the principles of brain imaging. Then, methodologies of data processing for the main brain imaging tools will be provided to the students with hands-on sessions: students will become familiar with the main pipelines for PET and fMRI data reconstruction, realignment, spatio-temporal normalization, first and second-level analyses.

Lecture Contents:
- Introduction to behavioral and cognitive neurosciences: definition and overview of main applications. The contribution of neuroimaging to cognitive neuroscience
- Introduction to Positron Emission Tomography, basics of PET functioning and application. PET applications for clinical and research purposes. Examples of neurological cases of PET imaging. Indications for running a PET experimental protocol.
- Introduction to functional magnetic resonance imaging. Introduction to nuclear magnetic resonance imaging and its application in brain functional imaging
- Introduction to functional magnetic resonance imaging: definition of T2* and origin of the BOLD signal. Experimental design for fMRI protocols. Introduction to fMRI data preprocessing (image registration, realignment, smoothing, motion correction, etc.). Statistical approaches for group analysis in fMRI.
- Resting state protocols and the default mode network

Teaching Method:
The course includes theoretical and methodological face-to-face lessons with the help of slides. E-learning platform are used to share learning materials (slides, data, etc.). Hands-on lessons will be promoted.
Bibliography:
Slides of the course

Final Exam:
Knowledge is verified through oral presentation of selected papers on the theoretical and methodological aspects of neuroimaging, and through the completion of an analytical pipeline relative to an assigned fMRI dataset.

Prerequisites:
None
Learning Outcomes:
Knowledge of procedures for the acquisition of electroencephalographic activity in humans. Knowledge of common procedures for the preprocessing and analysis of electroencephalographic recordings.

Abstract:
The course will provide an introduction to the use of electroencephalography (EEG) for the study of brain activity in humans. In particular, the course deals with the following topics:
a) Principles of electroencephalography;
b) Preprocessing of EEG recordings;
c) Basic approaches for the analysis of EEG data.

Lecture Contents:

Part 2. Preprocessing of EEG recordings. Identification of the most common artefacts. Procedures for the exclusion or reduction of common artefacts. Basic principles of source modeling (Lectures).

Part 4. Procedures for the visualization and inspection of EEG recordings in MATLAB. Use of the EEGLAB toolbox for data visualization and analysis (Practical lesson).

Part 5. Procedures for basic data preprocessing, including data filtering and data inspection for the identification and rejection of electrodes and epochs containing physiological or non-physiological artefacts (Practical lesson).

Part 6. Use of independent component analysis for the reduction of ocular, muscular, and electrocardiographic artefacts in EEG signals (Practical lesson).

Teaching Method: Lectures, Practical lessons, Practical lesson in the EEG laboratory

Bibliography:
Riitta Hari, Aina Puce. MEG-EEG Primer. 2017
Final Exam:
Yes (oral exam)

Prerequisites:
Strongly suggested: Basic Programming for Neuroscience
Basic Programming for Neuroscience
Monica Betta
16 Hours

Learning Outcomes:
you will learn how to plan and script by yourself the simple and complex functionalities that will be
fundamental for your research activity, and to understand the code before running it.

Abstract:
The course is aimed at students who have little or no experience with programming and will provide a
general introduction to the Matlab software package.
Basic concepts and description of elementary functions will be illustrated.
Practical applications, in particular in the framework of neuro-signal analysis, will be carried out during
hands-on sessions.

Lecture Contents:
Basic concepts of programming (defining the problem, planning the solution, coding the program, testing
the program, documenting the program) and a preliminary description of Matlab environment.

Teaching Method:
frontal lessons followed by hands-on sessions

Bibliography:
I am a biomedical engineer. During my PhD in "automation, robotics and bioengineering" I intensely
worked on the development of validated and automated functionalities for sleep research, in collaboration
with the Institute of Clinical Physiology (CNR, Pisa) and the Lausanne University Hospital (switzerland). I
am a member of the MoMiLab since 2016.

Final Exam:
Oral examination. At the end of the course you will be asked to write by yourself some parts of a code.

Prerequisites:
none
Biosignals, Bionics and Neuroscience
Michele Emdin, Enzo Pasquale Scilingo, Domenico Prattichizzo
24 Hours

Course description will be available soon.
Clinical Psychopathology and Psychiatry
Pietro Pietrini
16 Hours

Learning Outcomes:
By attending this Course, students will learn the fundamental psychopathological and clinical aspects of the main psychiatric disorders, including affective disorders, psychosis and personality disorders. Students will learn the most recent acquisitions from genetic and cognitive neuroscience to the understanding of the etiopathogenesis and clinical course of mental disorders. Implications for mental insanity evaluation will also be discussed.

Abstract:
Mental disorders remain to-date still undiagnosed or misdiagnosed in many cases, with deleterious effects on the individual patient’s life, including extreme acts that could be prevented by early and prompt diagnosis. Because most mental disorders appear during adolescence, their effects may be even more disruptive and dramatic. Furthermore, mental disorders may favor alcohol and drug abuse as well as promote abnormal behaviors that may pose serious risks for the patients and their family members. At the same time, mental disorders may affect, even severely, the ability of the patient to control their acts. This, in turn, may become relevant for assessing their responsibility in situations that fail to respect the law. Implications for the forensic and legal setting, including the role of personality disorders in imputability (see the Raso Sentence by the Italian Supreme Court in 2005) will be discussed.

Lecture Contents:
* The issue of the diagnostic process in Psychiatry. Differences as compared to the other medical branches
* Affective disorders. Mood depression. Psychopathological factors in mood depression. The neurobiology of depression
* Bipolar disorder. The psychopathological condition of mania. Lack of critical abilities in mania. Clinical course of bipolar disorders. Predicting switch from one polarity to the other
* Anxiety disorders. General anxiety, panic attacks. Obsessive-compulsive disorders
* Psychoses. Schizophrenia and schizophreniform disorders. Delusional thinking. Hallucinations
* Personality disorders. Definition and classification. The three clusters of personality disorders. Psychopathological and clinical aspects of the individual personality disorders.
* Mental disorders and implications for imputability: the assessment of insanity and implications for the forensic and legal settings

Teaching Method:
The course includes theoretical and methodological face-to-face lessons, with the help of slides and publications. E-learning platform are used to share learning materials (slides, data, publications, text chapters, etc.).

Bibliography:
Lesson slides; selected papers and text chapters discussed in class
Final Exam:
Knowledge will be verified throughout the course by student's engagement into discussion in class; a written examination with open questions and multiple choice questions will be administered at the end of the course.

Prerequisites:
It is strongly suggested, though not mandatory, that students have taken the following courses prior to enrolling in this one: Introduction to Cognitive and Social Psychology; Neurobiology of Emotion and Behavior.
Cognitive Economics
Luca Polonio
20 Hours

Learning Outcomes:
At the end of the course, the student should have a clear understanding of different methods in the field of cognitive economics. The student should be able to design an experiment to investigate simple economic decision making processes. The student should be able to recognize the weaknesses and strengths of published articles, starting from the research question, through the method used, to the reporting of the project’s outcome.

Abstract:
The goal of the course is to provide an introduction to cognitive economics and a balanced view of the possibilities of the process tracing approach, which is the investigation of the processes underlying choice behavior. In addition, this course aims to provide an overview of different models of choice, such as drift diffusion and rational inattention models. Finally, the course aims to provide a practical understanding of different methods from psychophysics, including the analysis of reaction time, mouse-lab and eye-tracking for students interested in designing their own psychophysics experiments.

Lecture Contents:
1) What is Cognitive Economics;
2) Methods from psychophysics to the investigation of decision making (Analysis of reaction time, mouse-lab and eye-tracking)
3) Drift diffusion model;
4) Rational inattention;
5) The Role of Cognitive Abilities in Decision Making;
6) Bounded Rationality and Social Preferences;
7) The Role of Emotion in Decision Making

Teaching Method: Lectures/oral presentations

Bibliography:

Final Exam:
Writing of a research project proposal; Critical analysis essay on an article

Prerequisites:
While a general understanding of behavioral economics and game theory is welcome, no prerequisite is strictly necessary.
Learning Outcomes:
This course aims to provide students with basic principles and methodologies of computer programming using Python. It is aimed particularly to students without a computer science background. The main objective is to develop the necessary skills to effectively read, write, and maintain computer programs. It provides background for facilitating the understanding of advanced programming classes as well as the proficiency with domain-specific software libraries and tools.

Abstract:
The course will cover the basic principles of programming, starting from the interaction between programs and the environment (memory, input/output) in which they execute. It will discuss: fundamental programming constructs (conditional statements, loops); how to effectively structure code using functions; recursion; object-oriented programming; basics of functional programming; memory management for programs (garbage collection). The Python programming language will be used to demonstrate these concepts and to develop simple illustrative programs that will be presented throughout the course.

Lecture Contents:
Introduction to computer architectures; programming; variables; data structures and Python sequences; memory management; conditional statements; for and while loops; functions; basics of object-oriented programming; basics of functional programming.

Teaching Method:
Blackboard; slides; programming tutorials

Bibliography:
M. Lutz. Learning Python, O'Reilly.

Final Exam:
Group project

Prerequisites:
None.
Learning Outcomes:
By the end of this course, Ph.D. Students will be able to:
- describe and interpret the main contents and methodologies in visual culture studies and visual studies of science;
- perform close readings of key texts in visual culture studies and media theory of the 20th Century;
- analyze critically key essays regarding the topics covered in class (presentation);
- understand and evaluate the main features of scientific photography (case studies from the end of the 19th Century).

By the end of the assessment, Ph.D. Students will be able to:
- Critically evaluate a specific topic at the juncture of the topics discussed in class and their own research projects;
- Produce an original paper

Abstract:
The course will be divided into two, closely interrelated parts. The first part will be dedicated to a clarification of contents and methodologies of the research field visual studies of sciences, mostly conducted through a genealogical approach. Mentioning and analyzing a vast array of texts and authors, the course will offer an in-depth study of visual culture studies, Bildwissenschaft and theories of media from the 20s and 30s (L. Moholy-Nagy and W. Benjamin in particular).
In order to put the methodological framework outlined in the first part to work, the second part of the course will be dedicated to specific case studies, starting from the photographic work of the French physiologist Etienne-Jules Marey (1830-1904).
The understanding of the course material will be assessed through a (1) mid-term examination given in class through the course and (2) a final paper. The paper will be based on material from any topic discussed in class, in engagement with Students' research projects. The aim is to publish the best papers, and/or use your essay in order to prepare a joint publication together with me and/or your classmates.
A more detailed course description with additional information (required readings, grading scale, class policies, etc.) will be sent to all the Students at least 2 weeks before the beginning of the course.

Lecture Contents:
(I) Course Presentation. Introduction and Key Concepts: visual studies of science and visual cultures studies (1st part).
(II) Introduction and Key Concepts: visual cultures studies (2nd part).
Methodological conclusion and brief description of the impacts of visual studies of science.
(III) Midterm Presentation#1: Key texts on visual cultures studies.
(IV) Media theories and the cultural meanings of images: Laszlo Moholy-Nagy, Walter Benjamin and Siegfried Kracauer (1st part).

(VI) Midterm Presentation#2: Key texts on media theory.

(VII) Analysis of the first case study.

(VIII) Analysis of the second case study.

(IX) Midterm Presentation#3: Key texts on case studies.

(X) Conclusions and general discussion about the final paper.

Teaching Method:
The course combines various teaching approaches, both student-centered and teacher-centered methods, such as:

1. Inquiry-based learning.
2. Direct Instruction.
3. Eventual off-site lectures.

Bibliography:
- Mitchell, W.J.T., What do pictures want? The lives and loves of images, Chicago/London: The University
Final Exam:
In order to delve deeper into critical issues at the juncture of the topics discussed in class and students' research projects, each student will be responsible for submitting one essay assignment on a topic of her/his choice which must be established in agreement with me. Each student can decide on the topic of the final paper at any point during the course. Essays should be 8-10 pages in length. Deadline for the submission will be scheduled during the course.

Prerequisites:
None
Learning Outcomes:
The course aims at improving the students’ skills in understanding, presenting and evaluating problem statements and arguments. After following the course, students will be able to rigorously distinguish between "strong" and "weak" arguments; they can formulate and analyze theses and hypotheses and evaluate the impact that evidence and information has on them; and they can better draw logical and effective conclusions from both hypotheses or evidence.

Abstract:
Constructing and evaluating arguments is fundamental in all branches of science, as well as in everyday life. The course provides the basic tools to recognize and analyze correct forms of inference and reasoning, detect the unsound or fallacious ones, and assess the strength of various kinds of argument. The toolbox includes elementary deductive logic, naïve set theory, patterns of inductive and abductive inference, and elements of statistical and probabilistic reasoning. By engaging in real-world exercises of correct and incorrect reasoning, students will familiarize with basic epistemological notions (truth vs. certainty, knowledge vs. belief, theory vs. evidence, etc.), with the analysis of relevant informal concepts (like truth, falsity, lies, misinformation, disinformation, post-truth, fake news, rumors, etc.) and with common reasoning pitfalls, heuristics and biases as investigated in cognitive psychology and behavioral economics.

Lecture Contents:
Lecture 1. Presentation of the course. Discussion and choice of specific topics. Arguments and statements.
Lecture 2. Evaluating statements: Truth, certainty, informativeness, truthlikeness, etc. Relativism and post-truth.
Lecture 8. Recap, verification and general discussion.

Teaching Method:
Mixture of lectures and discussion seminar.

Bibliography:
We won’t have a textbook or a proper reading list. Relevant readings will be shared on Google Drive. The following are useful general texts on the main
topics of the course (all of them are owned by the IMT Library).

Final Exam:
Active contribution from the participants is a prerequisite for passing the course.

Prerequisites:
None
Cybersecurity (Essentials)
Rocco De Nicola
10 Hours

Learning Outcomes:
Methods for navigating securely and for defending assets and privacy.

Abstract:
The course is structured in two modules. The first module is introductory to cybersecurity in general and teaches methods for navigating securely and for defending assets and privacy. It can be beneficial for any student and does not assume any prior technical knowledge. The second module covers some advanced topics in cybersecurity such as security protocols, usage control, vulnerability analysis and web and mobile security.

Lecture Contents:

Teaching Method:
Blackboard; slides.

Bibliography:
Handouts with the slides, introductory books, research papers.

Final Exam:
No exam.

Prerequisites:
No prerequisite.
Learning Outcomes:
The main goals of the course are: (1) to take marketing theories and methodologies out into the world, applying them to interesting questions of individual behavior and societal outcomes; (2) to develop a basic understanding of human psychology and social dynamics as they apply to marketing contexts; (3) to become familiar with the major theory and research methods for analyzing consumer behavior; (4) to develop market analytics insight into consumer actions.

Abstract:
This class is structured into two parts: 1) general knowledge relating to basic conceptual notions of marketing and consumer behavior; and 2) heritage marketing. Most of the time will be devoted to close reading of textbooks and research papers, including a discussion of the relative merits of particular methodologies. Students will participate actively in class discussion, engage with cutting-edge research, evaluate empirical data, and write an analytical paper. The course aims at enabling students to develop and enhance their own skills and research interests.

Lecture Contents:
1. Course overview, consumer behavior; Chapters 1-4, Principles of Marketing
2. Marketing to create value, theory and practice; Chapters 5-9, Principles of Marketing
3. The Marketing Plan; Chapters 14-16, Principles of Marketing
4. Heritage marketing
5. Behavioral economics insights, guidelines for final paper

Teaching Method:
Lecturing

Bibliography:
The main textbook for this course is entitled “Principles of Marketing” and is freely available online https://open.lib.umn.edu/principlesmarketing/.

Additional readings will be provided by the instructor based on students’ research interests (see Google Drive)

Final Exam:
50 % Participation. Attendance is required and will be recorded. The teaching format is interactive, i.e. active discussion is expected between students and instructor and will be part of the student evaluation. Abstract concepts will be understood through real life examples and observations.
50 % Final Paper. You will select a topic related to marketing and consumer decision making and write a paper.

Prerequisites:
None
Forensic and Legal Psychology
Pietro Pietrini
16 Hours

Learning Outcomes:
By attending the course, students will learn the fundamentals of psychology and psychiatry as well as the most innovative applications of cognitive and experimental neuroscience to the forensic field. Students will have a first-hand presentation of ground-breaking cases, including the expert report in the 2009 Trieste Court of Appeal case, the 2011 Como's Court case and others, in which neuroscientific data have been used to corroborate the expert report conclusions. Students will learn the critical aspects and the pitfalls of psychiatric forensic examinations and of expert cross-examination.

Abstract:
Contrary to all the other branches of medicine, diagnostic process in psychiatry still suffers from the (almost) complete absence of objective laboratory tests. Which results in a poor diagnostic concordance. Even worse is the case in forensic psychiatry, where matters are more complex as compared to the clinical setting. Faced with the classical forensic question, whether or not the defendant is capable to understand and to will, consultants appointed by the different parts (i.e., the judge, the prosecutor, the defendant, the victim) most of the times reach opposite conclusions - based on their role - which are highly speculative and lack of any objective support. Over the last decade, progressive effort has been put to minimize subjective speculations in forensic psychiatric assessment. Applications of neuroscience methodologies, including structural and functional brain imaging and molecular genetics, have proven to increase objectivity.

Lecture Contents:
* The concept of Free Will in the forensic context. The psychological determinants of behavior. How we make decisions
* Psychopathy and behavior. Psychopathy from a psychiatric perspective. Is there a moral blindness?
* Psychopathy and anti-social behavior. Psychopathy as a predictor of criminal behavior. Inside the brain of psychopaths: structural brain differences between psychopathic individuals and healthy controls.
* The functional neuroanatomy of aggressive behavior in humans. Relevance to the understanding of anti-social behavior
* Genetic bases of personality and behavior. Principles of genetics
* Gene and environment in the modulation of social and anti-social behavior.
* Structural and functional brain imaging examinations in the forensic domain: what can these methods tell us about imputability?
* Behavioral genetic examinations in the forensic domain
* Applications of behavioral genetics and brain imaging examinations in the individual assessment in the forensic domain: the 2009 Trieste Court of Appeal case (the first case in Europe); the 2011 Como Court case
Acquired paedophilia as a result of brain tumor. Literature review and discussion of a recent Italian case.

Working research hypothesis: is there a Functional Frontal Fragility Syndrome?

Teaching Method:
The course includes theoretical and methodological face-to-face lessons, with the help of slides and case-report publications. E-learning platform are used to share learning materials (slides, data, publications, etc.). Hands-on lessons will be promoted.

Bibliography:
Lesson slides; selected papers of studies and case reports discussed in class

Final Exam:
Knowledge will be verified throughout the course by student’s engagement into discussion in class; a written examination with open questions and multiple choice questions will be administered at the end of the course

Prerequisites:
Basic knowledge of brain imaging methodologies; strongly suggested, though not mandatory, that students have followed the following courses prior to enrolling in this one: Introduction to Cognitive and Social Psychology ; Neurobiology of Emotion and Behavior: Clinical Psychopathology and Psychiatry
Learning Outcomes:
By the end of this course, students will:
- have the ability to employ the fundamental tools of Probability Theory in order to solve different kinds of problems,
- have the fundamental concepts of Statistical Inference in order to perform various kinds of statistical analysis,
- appreciate the importance of mathematical formalization in solving probabilistic problems and in performing statistical analysis,
- be able to independently read mathematical and statistical literature of various types and be life-long learners who are able to independently expand their probabilistic and statistical expertise when needed.

Abstract:
This course covers the fundamental concepts of probability and statistical inference. Some proofs are sketched or omitted in order to have more time for examples, applications and exercises.

Lecture Contents:
This course deals with the following topics:
- probability space, random variable, expectation, variance, cumulative distribution function, discrete and absolutely continuous distributions,
- random vector, joint and marginal distributions, joint cumulative distribution function, covariance,
- conditional probability, independent events, independent random variables, conditional probability density function, order statistics,
- multivariate Gaussian distribution, copula functions,
- probability-generating function, Fourier transform/characteristic function,
- types of convergence and some related important results,
- Mathematical Statistics (point estimation, interval estimation, hypothesis testing, linear regression, introduction to Bayesian statistics).

Teaching Method:
Frontal teaching

Bibliography:
- Slides and other material provided by the lecturer
Final Exam:
Written test

Prerequisites:
No
Funding and Management of Research and Intellectual Property
Marco Paggi
10 Hours

Learning Outcomes:
How to write a research/mobility project proposal; fundamentals on the management of intellectual property rights.

Abstract:
The long seminar aims at providing an overview of funding opportunities for PhD students' mobility, post-docs, and researchers (Erasmus+ scheme; scholarships by the Alexander von Humboldt Foundation; initiatives by the Deutscher Akademischer Austausch Dienst; scholarships offered by the Royal Society in UK; bilateral Italy-France exchange programmes; Fulbright scholarships; Marie Curie actions; grants for researchers provided by the European Research Council). For each funding scheme, specific hints on how to write a proposal are given. In the second part of the long seminar, fundamentals on the management of intellectual property rights (copyright transfer agreements, open access, patents, etc.) are provided.

Lecture Contents:
- Overview of funding schemes to support research mobility;
- Fundamentals of Intellectual Property Rights (patents, copyrights, etc.)

Teaching Method:
Powerpoint slides

Bibliography:
Handouts are provided to the participants.

Final Exam:
This long seminar has no final exam.

Prerequisites:
None
Learning Outcomes:
The goal is to equip students with an in-depth understanding of the main concepts and tools of game theory in order to enable them to successfully pursue research related to strategic behavior.

Abstract:
The course begins providing a detailed discussion of the state of the art approach to the modeling of strategic situations as games. Then, basic solution concepts and their main refinements will be reviewed. Finally, prominent applications concerning incomplete and asymmetric information will be presented.

Lecture Contents:
Game concepts covered:
Dominance and iterative dominance, rationalizability, Nash equilibrium, subgame perfect Nash equilibrium, trembling hand perfect Nash equilibrium, weak perfect Bayes-Nash equilibrium, sequential equilibrium, perfect Bayes-Nash equilibrium, out-of-equilibrium beliefs refinements.

The discussion of all theoretical concepts will be accompanied by representative applications from economics and the social and behavioral sciences.

Teaching Method:
Frontal lectures

Bibliography:

Final Exam:
1/3 assignments, 1/3 final written exam, 1/3 essay

Prerequisites:
The course is self-contained, but being familiar with basic concepts from calculus, linear algebra, and probability theory is quite helpful.
Learning Outcomes:
At the end of the course, students are expected to have specific knowledge of the neurophysiology of perception and applications of the most important brain functional techniques toward the investigation of the neuronal basis of sensory modalities. At the end of the course, students are expected to have a general background knowledge of general topics of cognitive and social neurosciences, and to get introduced to the basic principles of brain functional techniques and their applicability for assessing neural bases of mental functions.

Abstract:
This course will provide an introduction to general themes in Cognitive and Social Neuroscience. In the first part of the course, we will review seminal findings that had a major impact on our knowledge of cognitive processes and social interactions, as well as more recent studies that took advantage of neuroimaging, electrophysiology and brain stimulation methods to shed new light on decision-making and social behaviors. During the second part of the course, students will be asked to perform a brief presentation of a research article and to critically discuss positive aspects and limitations of the study.

Lecture Contents:
- Introduction to cognitive neuroscience, interaction of neuroscience with other disciplines, historical perspective of neuroscience; introduction to neuroimaging: advantages and limitations; outline of brain physiology
- Outline of brain anatomy and functional organization, introduction to brain metabolism and neurovascular coupling; implications for cognitive neuroscience and neuroimaging
- Introduction to Positron Emission Tomography, outline of research and clinical applications
- Introduction to functional Magnetic Resonance Imaging, outline of research and clinical applications
- How to design a behavioral or neuroimaging study and an experimental protocol in cognitive neuroscience
- Introduction to the neural bases of perception, general basis of input transduction and perception, organization of perception. Outline on visual perception and functional neuroanatomy of visual processing.
- The neural correlates of selected topics of cognitive and social neurosciences, such as motor control, memory and attention, action understanding, emotion and social interaction, decision-making processes, applied with a multidisciplinary approach in behavioral sciences, economics, or aesthetic perception.

Teaching Method:
The course includes theoretical and methodological face-to-face lessons with the help of slides. E-learning platform are used to share learning materials (slides, data, etc.).
Bibliography:
Slides of the course.
Suggested readings:

Final Exam:
Knowledge is verified through oral presentations on selected topics.

Prerequisites:
None
Learning Outcomes:
Knowledge of the main approaches for the study of consciousness in humans. Identification of main states of vigilance based on electroencephalographic activity. Knowledge of the impact of homeostatic and circadian factors on brain structure and function.

Abstract:
The course will provide an introduction to fundamental concepts and current experimental approaches related to the study of the functional and anatomical basis of consciousness. In particular, the course deals with the following topics:

a) Definition of consciousness and identification of its fundamental properties;
b) The neuroanatomical basis of consciousness;
c) Main experimental paradigms and methodological approaches to the study of consciousness;
d) Altered states of consciousness: sleep, anesthesia, seizures, coma and related conditions;
e) Sleep as a model for the study of consciousness: local aspects of sleep and wakefulness.

Lecture Contents:
Part 1. Definition of consciousness and identification of its fundamental properties. The neuroanatomical basis of consciousness.

Part 3. Behavioral and functional differences between sleep and wakefulness. Sleep scoring and analysis of sleep structure. Sleep as a model for the study of consciousness. Local aspects of sleep and wakefulness. The neural correlates of dreaming.

Part 4. Altered states of consciousness: sleep, anesthesia, coma, unresponsive wakefulness syndrome (or vegetative state), minimally conscious state, seizures. Measures of the level of consciousness in physiological and pathological conditions.

Teaching Method:
Lectures

Bibliography:
Stanislas Dehaene. Consciousness and the brain: Deciphering how the brain codes our thoughts. 2014

Final Exam:
No

Prerequisites:
NA
Learning Outcomes:
Being able to understand the basic concepts and theoretical frameworks in complex network theory

Abstract:
The course will provide an introduction to the mathematical basis of Complex Networks and their use to describe, analyze and model a variety of physical and economic situations.

Lecture Contents:
LECTURE 01 Graph Theory Introduction
LECTURE 02 Properties of Complex Networks I
LECTURE 03 Properties of Complex Networks II
LECTURE 04 Communities
LECTURE 05 Different kind of Graphs
LECTURE 06 Ranking
LECTURE 07 Static Models of Graphs
LECTURE 08 Dynamical Models of Graphs
LECTURE 09 Fitness Models
LECTURE 10 Financial Networks

Teaching Method:
Slides

Bibliography:
- Easley, Kleinberg “Networks Crowds and Markets” CUP (2010)
- http://barabasilab.neu.edu/networksciencebook/

Final Exam:
Essay by students.

Prerequisites:
Basic of mathematics.
Introduction to Neuro-Linguistics
Alessandra Rampinini
12 Hours

Learning Outcomes:
Basic notions of neurolinguistics

Abstract:
Language springs from distributed, basic as well as higher sensory and cognitive functions. The course will explore the evolutionary and neural bases of language development, from the low-level perceptual-motor stage to the combinatory, attentive, mnemonic processes driving morphosyntax and eventually, semantics and conceptualization.

Lecture Contents:
Introduction, functional and structural neuroanatomy of language, bilingualism, sign language, lateralization

Teaching Method:
Frontal lessons

Bibliography:
The teacher will share a Google Drive with the students

Final Exam:
Closed and open answers, written exam

Prerequisites:
None
Introduction to Neuropsychology
Francesca Garbarini
12 Hours

Course description will be available soon.
Learning Outcomes:
At the end of the course, students are expected to have specific knowledge of the basis of the psychophysical approach and how to analyse behavioural data sets.

Abstract:
The course will review how to implement a behavioural experimental designs, how to calculate thresholds, what are the Bayesian framework and the Optimal integration. The course will detail practical examples with hands-on sessions based on real and simulated data. Practical examples will be performed by learning Matlab based toolboxes.

Lecture Contents:
• Introduction to Introduce basic concepts and terminology.
• Experimental designs
• Available psychophysical procedures. Palamedes
• Psychometric PF functions. Fitting a psychometric function (single subj level)
• Adaptive methods, e.g. Pest, Quest
• Bayesian framework; Optimal cue integration
• MLE; toolbox from Hills et al. Optimal cue integration toolbox

Teaching Method:
The course includes theoretical and hands-on sessions. E-learning platform are used to share learning materials (slides, data, etc.).

Bibliography:
Slides of the course

Final Exam:
Knowledge is verified through hands-on sessions

Prerequisites:
none
Learning Outcomes:
At the end of the course, the student will have a basic knowledge of a quite-large set of commonly-used machine-learning techniques.

Abstract:
The course provides an introduction to basic concepts in machine learning. Topics include: learning theory (bias/variance tradeoff, Vapnik-Chervonenkis dimension and Rademacher complexity, cross-validation); supervised learning (linear regression, logistic regression, support vector machines); unsupervised learning (clustering, principal and independent component analysis); semisupervised learning (Laplacian support vector machines); online learning (perceptron algorithm); hidden Markov models.

Lecture Contents:
Lecture 1: Introduction to supervised learning and regression.
Lecture 2: Classification problems.
Lecture 3: Online learning: the perceptron learning algorithm and the LQG online learning framework.
Lecture 4: Unsupervised learning.
Lecture 5: Introduction to statistical learning theory.
Lecture 6: Structural risk minimization and support vector machines.
Lecture 7: A joint application of econometrics and machine learning: trade-off between sample size and precision of supervision.
Lecture 10: Connection between supervised learning and reinforcement learning.

Moreover, the teacher will illustrate some of the methods above, based on MATLAB implementations.

Teaching Method:
The teacher will project slides on the screen (a copy of the slides and of the MATLAB code will be provided to the students).

Bibliography:
The following books are related to the course. They can be useful as a supplementary material.

The following are slides/lectures notes from related courses.

The following reference reports commented MATLAB code for some of the machine-learning techniques examined in the course.

Final Exam:
The student will prepare slides for a short seminar (20-30 minutes) on a topic related to machine learning. The topic of the seminar will be either proposed by the teacher or chosen by the student. The date of the seminar will be agreed between the student and the teacher. The seminar will take place either in the teacher’s office or in the classroom (in case several students will decide to have their seminars in the same day).

Prerequisites:
Calculus.
Management of Complex Systems: Approaches to Problem Solving
Andrea Zocchi
40 Hours

Course description will be available soon.
Learning Outcomes:
The course is aimed to review basic concepts of matrix algebra at an intermediate/advanced level.

Abstract:
The course is aimed to review the following basic concepts of linear algebra:
- systems of linear equations: solution by Gaussian elimination, PA=LU factorization, Gauss-Jordan method;
- vector spaces and subspaces, the four fundamental subspaces, and the fundamental theorem of linear algebra;
- determinant and eigenvalues, symmetric matrices, spectral theorem, quadratic forms;
- Cayley-Hamilton theorem, functions of matrices, and application of linear algebra to dynamical linear systems;
- iterative methods for systems of linear equations;
- ordinary least squares problem, normal equations, A=QR factorization, condition number, Tikhonov regularization;
- singular-value decomposition, Moore-Penrose pseudoinverse;
The course also shows how to apply the methods above using MATLAB. Finally, an economic application of matrix algebra (the Leontief input-output model) is also detailed.

Lecture Contents:
- Systems of linear equations;
- Properties of systems of linear equations;
- Determinant and eigenvalues;
- Applications of eigenvalues;
- QR factorization, ordinary least squares problem, and variations;
- An economic application of linear algebra: the Leontief input-output model.

Teaching Method:
The teacher will project slides on the screen (a copy of the slides and of the MATLAB code will be provided to the students). He will also solve some exercises on the blackboard.

Bibliography:
MATLAB teaching codes based on Prof. Strang's books:
http://web.mit.edu/18.06/www/Course-Info/Tcodes.html

Students having already a good background in matrix algebra are encouraged to read the following more advanced topics from the second book by Prof. Strang:
- application of linear algebra to graphs (Section 2.5),
- application of Gram-Schmidt orthogonalization process to function spaces (Section 3.4),
- Fast Fourier transform (Section 3.5),
- complex matrices (Section 5.5),
- minimum principles (Section 6.4),
- finite element method (Section 6.5),
- linear programming, the simplex method, and duality (Sections 8-1-8.4),
- Jordan’s canonical decomposition (Appendix B).

Final Exam:
Final written examination (optional, 2 hours)

Prerequisites:
None, but since this is 10-hours review course, it is highly advisable to have already attended a course about matrix algebra in the past.
Learning Outcomes:
By attending this Course, students will learn the fundamentals of the neurobiological correlates of emotion and behavior and their evolutionary meaning under physiological conditions. Neurobiological correlates and effects of altered mental conditions on emotion and behavior also will be discussed.

Abstract:
The body of knowledge gained in the field of neuroscience in the last quarter of century have changed the way we conceptualize mind, behavior and even human nature. Since the 19th century it has been known that lesions to the cerebral cortex may lead to impairments in specific cognitive functions and in the ability to modulate behavior. The recent development of modern methodologies for investigating brain functions, including positron emission tomography and functional magnetic resonance imaging has made it possible to investigate the neural circuits implicated not only in cognitive processes such as perception, attention, memory and language, but also in more elusive mental functions, including emotion and behavior. In addition, molecular biology and genetics have led to the decoding of the human genome and are now investigating the role that the genetic endowment plays in shaping not only physical, but also personality features, behavior and vulnerability to mental disorders.

Lecture Contents:
* Brain structures involved in emotion and behavior in humans, non humans primates and other vertebrates. Why it is important to study the neurobiological correlates of emotion and behavior in the human brain
* Brain functional and structural correlates of emotion and behavior in humans. How structural and functional brain imaging methodologies can be applied to the in vivo study of human emotion and behavior
* Brain response to fearful stimuli. The role of amygdala. Emotions as a way to enhance signal-to-noise ratio in information processing. Evolutionary meaning of emotional processing
* Mood influence on emotional brain response. Effects of priming on amygdala response to neutral and sad stimuli. Implications for the understanding of the effects of environmental factors on mood balance
* Effects of negative life events on brain structures. Implications for the neurobiology of depression. Effects of meditation on brain structure and function
* Cognitive and emotional determinants in behavioral modulation. From instinct to decision making. The neural correlates of aggressive control in the healthy human brain. Altered structural and functional cortical and subcortical factors in behavioral dysfunctions: implications for mental insanity in the forensic context
* The human genome. Genetic alleles involved in emotional processing and behavior. Genetic vulnerability to mood disorders
* Moral behavior. Cognitive and emotional aspects. The genetic factors that may influence human moral decisions
* Genes and environmental factors in shaping individual social behavior and vulnerability to psychological distress and depression

* Implications of recent neuroscience acquisitions about human emotion and behavior for the social sciences and the law

Teaching Method:
The course includes theoretical and methodological face-to-face lessons, with the help of slides and experimental research publications. E-learning platform are used to share learning materials (slides, data, publications, etc.)

Bibliography:
Lesson slides; selected papers of studies and case reports discussed in class

Final Exam:
Knowledge will be verified throughout the course by student's engagement into discussion in class; a written examination with open questions and multiple choice questions will be administered at the end of the course

Prerequisites:
Basic knowledge of brain imaging methodologies. It is strongly suggested, though not mandatory, that students have followed the following courses prior to enrolling in this one: Introduction to Cognitive and Social Psychology; Basic Principles and Applications of Brain Imaging Methodologies to Neuroscience.
Learning Outcomes:
At the end of the course, the student should have a clear understanding of the strengths and limitations of the different techniques used in Neuroeconomics. The student should be able to integrate approaches coming from different disciplines such as computational neuroscience, psychology of judgment and decision, microeconomics, and anthropology. Moreover, the student should have a general understanding of how human and animal preferences are represented in the mammalian nervous systems. A general understanding of the main reinforcement learning, value learning, and value representation models. The ability to recognize the weaknesses and strengths of published articles, starting from the research question, through the method used, to the reporting of the project’s outcome.

Abstract:
The course will provide an overview of the field and an exhaustive description of the most important discoveries in the major research areas of Neuroeconomics such as decision making under risk, loss aversion, inter-temporal choice and social decision making. We will discuss the need for Neuroeconomics and the limitations of the traditional fields of Economics, Psychology and Neuroscience. The course will provide an overview of how human and animal preferences are represented in the mammalian nervous systems and particular emphasis will be given to the neural mechanisms for choice. The course will include an introduction to the most influential reinforcement learning, value learning and value representation models and will describe in detail the brain circuits involved in social decision making.

Lecture Contents:
Introduction and scope of Neuroeconomics; The tools of Neuroeconomics; How human and animal preferences are represented in the mammalian nervous systems; Risk, time preferences, social preferences, and emotion; fundamentals of reinforcement learning, value learning, and value representation; The Neural mechanisms for choice; Social decision-making in humans and animals.

Teaching Method:
Lectures/oral presentations

Bibliography:

Final Exam:
Written exam containing open questions and critical analysis essay on an article

Prerequisites:
While a general understanding of brain systems is welcome, no prerequisite is strictly necessary.
Learning Outcomes:
At the end of the course, students are expected to have specific knowledge of the neurophysiology of perception and applications of the most important brain functional techniques toward the investigation of the neuronal basis of sensory modalities.

Abstract:
The course will review the neurophysiological and neural bases of perception in humans. In particular, for each sensory modality, the basic neurophysiology of perception will be evaluated with an experimental perspective. The course will consequently detail the neural bases of unimodal, multisensory and supramodal perception. The last part of the course will review recent observation in early and late sensory-deprived individuals to understand how the (lack of) a sensory experience affects brain functional and structural development.

Lecture Contents:
- Introduction to perception and sensory experience; definition perception vs. sensation and sensory modalities; common features across sensory modality; perception and imagery.
- The bodily senses: definition, subtypes, the skin and mechanoreceptors, physiology of bodily senses, central pathways, brain imaging of touch.
- Pain and nociception, physiology and central processing of pain (‘pain matrix’). Brain imaging of pain perception: methodological approaches, advantages and pitfalls.
- Chemical senses. Physiology of olfaction and taste. Brain imaging applied to the assessment of the neural correlates of chemical senses.
- The visual system. Physiology of vision, the eye and the central visual pathways. Brain imaging of the visual system.
- The visual system: the functional organization of the ventral and dorsal extrastriate patterns.
- Maps and modules in the ventral stream. Neural basis of face perception.
- Supramodality, definition and indications from the research in blind individuals. Functional features of supramodality and discussion on the open questions on the topic.
- The Auditory system. Anatomy, Auditory perception, Functional organization (anterior/posterior), computational Neuroscience
- Multisensory I and II. What is multisensory processing and functions, behavioral and neural correlates.
- Cross-modality. Heteromodal responses in sensory deprived model (animal and human) and in typical development
- Functional and Structural Development. Definition and examples of sensitive and critical periods. Unisensory and Multisensory functional development.

Teaching Method:
The course includes theoretical and methodological face-to-face lessons with the help of slides. E-learning platform are used to share learning materials (slides, data, etc.).

Bibliography:
Slides of the course.
Suggested readings:

Final Exam:
Knowledge is verified through oral presentations on selected topics.

Prerequisites:
None
Learning Outcomes:
Ability to solve numerically a problem related to a physical system and predict its response. The physical system can be embedded within an optimization problem, for instance, or it can be part of a complex system (biological, mechanical, thermo-mechanical, chemical, or even financial) you are interested in predicting its behaviour and evolution over time.

Abstract:
The course introduces numerical methods for the approximate solution of initial and boundary value problems governed by linear and nonlinear partial differential equations (PDEs) used to describe physical systems. The fundamentals of the finite difference method and of the finite element method are introduced step-by-step in reference to exemplary model problems taken from heat conduction, linear elasticity, and pricing of stock options in finance. Notions on numerical differentiation, numerical integration, interpolation, and time integration schemes are provided. Special attention is given to the implementation of the numerical schemes in finite element analysis programmes for fast intensive computations.

Lecture Contents:
- Numerical differentiation schemes
- Numerical interpolation schemes
- Numerical integration schemes
- Time integration algorithms
- Newton-Raphson incremental-iterative schemes for nonlinear problems
- Finite difference method
- Finite element method

Teaching Method:
Blackboard. Handouts are also provided.

Bibliography:

Final Exam:
An application of the taught methodologies to one case study of relevance for the PhD student's research is recommended. Alternatively, a topic to investigate can be suggested by the lecturer.

Prerequisites: The course is self-contained. Fundamentals of algebra are required.
Philosophical and Ethical Themes in Neuroscience
Mirko Daniel Garasic
10 Hours

Course description will be available soon.
Philosophy and Neuroscience in Moral Reasoning
Gustavo Cevolani
12 Hours

Learning Outcomes:
On completing the course, students will be able to appreciate the main issues surrounding the cognitive and neural foundations of morality, and to rigorously analyze and discuss them. They can also assess the relevance of empirical findings for current debates on ethics and for sensitive social issues more generally.

Abstract:
The analysis of moral reasoning and surrounding topics – how to assess “good” and “bad” actions, how to choose between them, how to justify these choices – is a classical problem of moral philosophy (ethics). More recently, moral psychologists started tackling those problems using a descriptive, empirically based approach. Still more recently, “neuroethicists” began investigating the neural correlates of moral judgment and the implications of neuroscientific results for moral philosophy. The course is an introduction to the essential issues arising at the interface between neuroscience, moral psychology, and moral philosophy. We shall explore problems concerning the biological and neural bases of moral thinking, the role of emotions in moral reasoning, the significance of empirical results for normative theories of morality, and some methodological issues arising within neuroethics.

Lecture Contents:
The topic of each lesson will be decided at the beginning of the course on the basis of student’s feedback; the following is a tentative list subject to change.

Lecture 1. Presentation of the course. Discussion and choice of specific topics. Philosophical theories of moral reasoning. Consequentialism, deontology, and virtue ethics
Lecture 6. Recap, verification and general discussion.

Teaching Method:
Mixture of lectures and discussion seminar.

Bibliography:
We won't have a textbook; the reading list will be shared later. The following are suggestions for background readings:
Brain. New York: Quill

Final Exam:
Active contribution from the participants is a prerequisite for passing the course. Each student will select a paper or topic related to the fields of neuroethics, moral psychology, moral philosophy, or the philosophy of neuroscience and give a 20–30 minutes presentation during one of the classes. The talk should present, clearly and concisely, a topic/problem/thesis, relevant arguments/results supporting or undermining it, and a final assessment. Students can choose among the suggested readings or propose a topic of their choice.

Prerequisites:
None.
Learning Outcomes:
On completing the course, the students will have an enhanced capacity of understanding and evaluating past and current debates about the reliability, the rationality and the limits of science. They can assess the scope and limits of scientific knowledge and appreciate the differences and relations between science and other scientific endeavours. They understand why and to what extent science is rational and often successful, and what is its role in guiding decision-making in modern societies.

Abstract:
The course provides an introduction to the basic concepts and problems in the philosophical analysis of scientific reasoning and inquiry. We will focus on some central patterns of reasoning and argumentation in science and critically discuss their features and limitations. Topics covered include the nature of theory and evidence, the logic of theory testing, and the debate about the aims of science and the trustworthiness of scientific results. We shall discuss classical examples and case studies from the history and practice of science to illustrate the relevant problems and theoretical positions. Students will freely engage in brainstorming on these topics and are welcome to propose examples, problems, and methods from their own disciplines.

Lecture Contents:
The topic of each lesson will be decided at the beginning of the course on the basis of student’s feedback; the following is a tentative list subject to change.

Lecture 1. Presentation of the course. Discussion and choice of specific topics. What is science?
Lecture 2. How many sciences? The method(s) of science. Exact and inexact sciences.
Lecture 3. Theories, models, data. Experiments and observations.
Lecture 4. Inferences in science. Falsification, confirmation, disconfirmation.
Lecture 6. History of science and scientific progress. The aim(s) of science.
Lecture 7. Science, truth, and reality.
Lecture 8. Recap, verification and general discussion.

Teaching Method:
Mixture of lectures and discussion seminar.

Bibliography:
We won’t have a textbook or a proper reading list. Relevant readings will be shared on Google Drive. The following are suggestions for background readings and possible topics of discussion.

Final Exam:
Active contribution from the participants is a prerequisite for passing the course.

Prerequisites:
None.
Principles of Brain Anatomy and Physiology
Luca Cecchetti
30 Hours

Learning Outcomes:
At the end of the course, students will be able to recognize major anatomical landmarks of the human brain, both in volume and surface space. They will also be able to analyze structural brain data using several neuroimaging tools (e.g., FSL, Freesurfer, TrackVis).

Abstract:
The course aims at introducing the fundamentals of brain anatomy and physiology. In the first part of the course we will revise cell types and cytoarchitectonic of the cortical mantle, with particular regards to visual, auditory, somatosensory and motor systems. We will then focus on gross neuroanatomy: gyri and sulci of the cortex, subcortical structures, brainstem nuclei and major white matter fasciculi. The second part of the course will be devoted to the study of functional neuroanatomy, with insights on the relationship between specific brain structures and human cognition, collected using functional and lesion studies. In the last part of the course we will review structural brain imaging methods: voxel-based and surface-based (e.g., thickness, folding) morphology, diffusion weighted imaging and tractography. Students will be also involved in the analysis of structural imaging datasets.

Lecture Contents:
- Useful terms to "navigate" the brain (e.g., dorsal, caudal, rostral) and how they relate to viewing planes (axial, coronal, sagittal); overall description of grey and white matter, as well as of the ventricular system. General description of brain development.
- Examples coming from comparative neuroanatomy on brain volume and cortical folding. General organization of white matter (associative, commissural and projection fibers). Brain morphology: to what extent is inherited and how it relates to gender and ethnicity. Changes in brain volume related to development, ageing and to circadian rhythms.
- Brainstem structure and function (pons, midbrain and medulla oblongata). Description of major pathways (e.g., corticopontocerebellar fibers, cerebral and cerebellar peduncles) and nuclei (inferior and superior olive, red nucleus, substantia nigra).
- Cerebral hemispheres and lobes. Identification of major sulci and gyri of the frontal lobe using Surfice and FSL. Frontal lobes functions with examples coming from lesion studies (e.g., impulse control, speech production, motor planning). Identification of white matter tracts connecting distinct regions of the frontal lobes using Trackvis.
- Identification of major sulci and gyri of the parietal lobe. Parietal lobes functions with examples coming from lesion studies (e.g., spatial and somatosensory processing). Dissection of white matter tracts connecting distinct regions of the parietal lobes. Temporal lobes functions with examples coming from lesion studies (e.g., speech comprehension, auditory processing). Dissection of white matter tracts connecting distinct regions of the temporal lobes.
- Identification of major sulci and gyri of the occipital lobe. Occipital lobes functions with examples coming from lesion studies (e.g., visual processing and multisensory integration). Dissection of white matter tracts connecting distinct regions of the occipital lobes using. Limbic lobe functions with examples
coming from lesion studies (e.g., emotional and salience processing). Dissection of white matter tracts connecting distinct regions of the limbic lobe.

- Identification of subcortical structures. Basal ganglia, thalamus, hippocampus and amygdala functions with examples coming from lesion studies (e.g., memory, motor control). Dissection of white matter cortico-subcortical tracts.
- Spatial normalization, AC-PC alignment, Talairach and MNI152 templates. Linear and Nonlinear spatial registration techniques: algorithms, cost functions (e.g., mutual information), degrees of freedom (e.g., affine vs rigid body) and interpolation (e.g., trilinear, spline, nearest neighbour). How to implement spatial transformations in FSL and how to deal with abnormal brains (e.g., lesions, atrophy).
- How to measure structural properties of the white matter: the diffusion weighted imaging. How does DWI works and which type of measures we can obtain (e.g., fractional anisotropy, mean diffusivity).
- Use of Freesurfer for cortical morphology and FSL for voxel-based morphology. Examples of structural covariance.

Teaching Method:
The course includes theoretical lectures with the help of slides. Practical lectures will cover the application of analysis tools to structural imaging data.

Bibliography:
Slides of the course

Final Exam:
Knowledge is verified through an interview on functional neuroanatomy and gross brain morphology (using both volumetric and surface-based representations).

Prerequisites:
None
Research Seminars
Pietro Pietrini, Emiliano Ricciardi
30 Hours

Learning Outcomes:
PhD students have to learn to present their research projects, to support the rationale of their studies and to discuss with advisors and fellows about their theoretical hypotheses and methodological approaches.

Abstract:
These interactive lessons are made up of short lectures by senior or junior fellows of the MOMILAB and PhD students of the CCSN track to present their research projects and discuss preliminary findings. The student is chaperoned through a detailed discussion and revision of all theoretical and methodological aspects of the research projects.

Lecture Contents:
Senior or junior MOMILAB fellows' and CCSN PhD students' research activities

Teaching Method:
Interactive seminars

Bibliography:
None

Final Exam:
Short seminar

Prerequisites:
None
Scientific Writing, Dissemination and Evaluation
TBD
8 Hours

Course description will be available soon.